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Introduction

Quantitative structure-activity relationship (QSAR) analysis 1s an essential method to correlate the
properties of a series of molecules with their biological activities and to predict the activities of new
compounds. Tailor-made scoring functions can be constructed by using the macromolecular structure-

based COMparative BINding Energy (COMBINE) analysis (ref. 1-3). This method provides the

possibility to derive 3D QSARs for a set of receptor-ligand complexes whose 3D structures can be

Crystal, NMR or modeled structures
of complexes of receptor and ligand

modeled. ¢
Flexible docking of ligands
Optimize hydrogen bond into target receptor
Method network with WHATIF with GOLD 3.0
The principal idea of COMBINE analysis 1s the assumption that the binding free energy AG 1s correlated ¢ ¢
with a subset of weighted interaction energy terms determined by the structures of receptor and ligand. Molecular mechanics energy minimization
of complexes in AMBER 8

COMBINE analysis starts with an energy minimized model of a receptor-ligand complex that 1s divided

for energy calculations into parts according to their spatial location, normally i1ts amino acid residues and ¢ ¢ l l

the bound ligand. These parts are used for calculating electrostatic and Lennard-Jones interaction energies Calculate ligand-receptor binding energy AU

as well as solvation energy terms between parts of the ligand and of the receptor. for each complex with ANAL module of AMBER 8

The resultant energy terms of many receptor-ligand complexes are analysed by Principial Component Partition AU of the receptor and the ligand Calculate solvation energy term

1nto several components on basis of location with UHBD or ZAP

Analysis (PCA) and are correlated to activity values by Partial Least Squares (PLS) coupled with suitable in the complex and physicochemical properties

for ligands, receptor, and complexes

variable selection and data pretreatment. With this correlation, important residues of the target can be AU - A 1
u ; Au Au’

1 1

1dentified for describing the binding affinity between receptor and ligand. 1

New ligands, which are docked 1nto the active site, can be ranked by this target-specific scoring function

and activity can be predicted.

Principle Component Analysis (PCA) in GOLPE 4.6

Correlate different components of binding energy AU
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Predicted binding affinity AG for docked compounds

Model building

For generating target-specific scoring functions by COMBINE analysis, we are focusing on different trypsin-like serine proteases of the

blood coagulation cascade, because of the large amount of published data as well as their importance in diseases.

The COMBINE model for urokinase based on 25 X-ray structures of the PDB and their published inhibitor constants. The structures
were superimposed and a representative receptor model was build. This model was minimized in complex with the experimental
determined conformations of the ligands. After calculating the interaction and solvation energy terms the nitial model resulted 1n a

coefficient of determination R* of 0.75 and a predictive correlation coefficient Q° of 0.36 at latent variable (LV) 4. A variable selection
improved the model toaR* 0f0.75 (0.83)anda Q”0f0.59(0.62)atLV 4 (LV 5).

In a subsequent step, the used ligands ('training') as well as further ligands with known binding affinity to trypsin-like proteases
('trypsin-like binders'), especially to urokinase ('uPA binders') and randomly selected ligands from the NCI database were docked ten

times 1nto the receptor model. For all of the docking solutions AG were predicted and were statistically analyzed. 4

best Chemscore ranked at LV 4 lowest AG at LV 4 best Chemscore.Fitness
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