

Tackling the cellular drug resistance of thymidylate synthase

- Disruption of an obligate dimer?

ACS 234 ${ }^{\text {th }}$ National Meeting\&Exposition
Boston, August 23, 2007
Outi Salo-Ahen

Overview

- Background
- Analysis of the dimer interface
- Hot spots
- Interface crevices in the X-ray structure
- Transient interface pockets?
- Summary and future work

Thymidylate synthase (TS) - Essential enzyme

Catalytic activity:

Critical target in cancer therapy

Cancer types:

- ovarian
- colorectal
- breast
- head and neck
- pancreas
- gastric

Homodimer - Two active sites

Current TS enzyme inhibitors:

a) Substrate (dUMP) analogs:

* e.g. 5-fluorouracil

b) Cofactor (5,10-methylenetetrahydrofolate) analogs:
* e.g. raltitrexed

Autoregulation of TS synthesis
 - Mechanism of drug resistance

Regulatory activity:

\rightarrow Blocks the translation of TS mRNA to TS protein

Autoregulation of TS synthesis
 - Mechanism of drug resistance

Regulatory activity:
\rightarrow Blocks the translation of TS mRNA to TS protein

* Ligand binding disrupts the regulation

Autoregulation of TS synthesis
 - Mechanism of drug resistance

Regulatory activity:
\rightarrow Blocks the translation of TS mRNA to TS protein

* Ligand binding disrupts the regulation
\rightarrow Drug resistance

Aim of the project
 - Development of better TS inhibitors -

Obligate dimer...
 Disrupting the dimer - novel way of inhibiting the enzyme?

1) Disrupt the dimer

OR

2) Inhibit dimerization

* With peptidic or small molecules
* Without causing drug resistance

Analysis of the dimer interface

- Hot Spots -

Hot Spots

Predicting hot spots - residues important for dimerization

FoldX* / Robetta** Web servers:
\rightarrow Free energy change (ddG) upon alanine mutation

Hot spot: $\geq 1 \mathrm{kcal} / \mathrm{mol}$ Neutral residue: < $1 \mathrm{kcal} / \mathrm{mol}$

* http://foldx.embl.de; ** http://robetta.bakerlab.org/

Hot Spots

FoldX* / Robetta**:

Hot Spots

\rightarrow Mutations to test the hot spots: can we disrupt the dimer?

If Yes:
\rightarrow Design ligands that bind in the proximity of the hot spots

* Range of ddG (dimer) for the predicted hot spots: $1.5-5.5 \mathrm{kcal} / \mathrm{mol}$

Analysis of the dimer interface
 - Interface crevices in X-ray structure -

Interface crevices in the hTS dimer
\rightarrow Cavities at the edges of the dimer interface Software: PASS 1.1 / SITE-ID (Sybyl 7.3) / CASTp

232 / $362 \AA^{3}(I, W)$

$25 \AA^{3}(W)$

Interface crevices in the hTS monomer

$\rightarrow \quad$ Two relatively deep cavities and one shallow pocket - not present in dimer

Analysis of the dimer interface - Transient interface pockets by MD -

See for example:
Wong et al., Proteins, 61, 850, 2005
Eyrisch and Helms, J. Med. Chem. 50, 3457, 2007

Transient interface pockets?

\rightarrow MD simulations of the TS monomer

- AMBER 8, ff03
- 1HVY.pdb (A chain)
- No ligands
- NPSA* implicit water model
- $300 \mathrm{~K}, 7 \mathrm{~ns}$
- heating in 3 steps
- reference MD with TIP3P water
* Wang and Wade, Proteins 50, 158, 2003

MD Trajectory analysis: Atomic fluctuations

MD Trajectory analysis: Conformational changes

Initial structure
Final frame NPSA
Final frame TIP3P

Interface pocket dynamics

1) Pockets changing size

Interface pocket dynamics

2) New pockets appearing

Interface pocket dynamics

3) Pockets disappearing (reappearing)

Summary and future work

1) Aim: Examine the possibility to inhibit hTS by disrupting the obligate dimer.

Summary and future work

1) Aim: Examine the possibility to inhibit hTS by disrupting the obligate dimer.
2) Predicted hot spots at the hTS interface (experiments in progress).

Summary and future work

1) Aim: Examine the possibility to inhibit hTS by disrupting the obligate dimer.
2) Predicted hot spots at the hTS interface (experiments in progress).
3) Identified interface cavities in the hTS crystal structure.

Summary and future work

1) Aim: Examine the possibility to inhibit hTS by disrupting the obligate dimer.
2) Predicted hot spots at the hTS interface (experiments in progress).
3) Identified interface cavities in the hTS crystal structure.
4) Performed MD simulations to find additional transient interface pockets at the monomer interface.

Summary and future work

1) Aim: Examine the possibility to inhibit hTS by disrupting the obligate dimer.
2) Predicted hot spots at the hTS interface (experiments in progress).
3) Identified interface cavities in the hTS crystal structure.
4) Performed MD simulations to find additional transient interface pockets at the monomer interface.

Future:
\rightarrow Use the identified pockets for virtual screening of ligand libraries.
\rightarrow Test the ligands against hTS.

Acknowledgements

EML Research gGmbH,

 Heidelberg, Germany- Dr. Rebecca Wade
- MCM Group

Financial support:

- Alexander von Humboldt Foundation
- Finnish Academy
- Finnish Cultural Foundation
- University of Kuopio
- Klaus Tschira Foundation
- EU
- Emil Aaltonen Foundation
- The Finnish Pharmacists' Association

Partners:

University of Modena, Italy

- Prof. Maria Paola Costi

INSERM/University Paris Sud, France

- Prof. Hannu Myllykallio

University of California San Francisco, USA

- Prof. Robert Stroud

Naxospharma, Italy
Molecular Discovery Ltd, UK

