

Tackling the cellular drug resistance of thymidylate synthase – Disruption of an obligate dimer?

ACS 234th National Meeting&Exposition Boston, August 23, 2007

Outi Salo-Ahen

Overview

- Background
- Analysis of the dimer interface
 - Hot spots
 - Interface crevices in the X-ray structure
 - Transient interface pockets?
- Summary and future work

Critical target in cancer therapy

- ovarian
- colorectal
- breast
- head and neck
- pancreas
- gastric

Current TS enzyme inhibitors:

- a) Substrate (dUMP) analogs:
 - * e.g. 5-fluorouracil

b) Cofactor (5,10-methylenetetrahydrofolate) analogs:

* e.g. raltitrexed

Autoregulation of TS synthesis – Mechanism of drug resistance

Regulatory activity:

→ Blocks the translation of TS mRNA to TS protein

mRNA image is adapted from: http://images1.clinicaltools.com/images/gene/rna2.jpg

Autoregulation of TS synthesis – Mechanism of drug resistance

Regulatory activity:

→ Blocks the translation of TS mRNA to TS protein TS mRNA

* Ligand binding disrupts the regulation

Autoregulation of TS synthesis – Mechanism of drug resistance

Regulatory activity:

→ Blocks the translation of TS mRNA to TS protein

 Ligand binding disrupts the regulation

 \rightarrow Drug resistance

mRNA image is adapted from: http://images1.clinicaltools.com/images/gene/rna2.jpg

Aim of the project – Development of better TS inhibitors –

Obligate dimer...

Disrupting the dimer – novel way of inhibiting the enzyme?

1) Disrupt the dimer

OR

2) Inhibit dimerization

- * With peptidic or small molecules
- * Without causing drug resistance

Analysis of the dimer interface – Hot Spots –

Hot Spots

Predicting hot spots – residues important for dimerization

FoldX* / Robetta** Web servers:

→ Free energy change (ddG) upon alanine mutation

Hot spot: ≥ 1 kcal/mol Neutral residue: < 1 kcal/mol

* http://foldx.embl.de; ** http://robetta.bakerlab.org/

→ Mutations to test the hot spots: can we disrupt the dimer?

If Yes:

→ Design ligands that bind in the proximity of the hot spots

* Range of ddG (dimer) for the predicted hot spots: 1.5-5.5 kcal/mol

Analysis of the dimer interface – Interface crevices in X-ray structure –

Interface crevices in the hTS dimer

→ Cavities at the edges of the dimer interface Software: PASS 1.1 / SITE-ID (Sybyl 7.3) / CASTp

232 / 362 Å³ (I, W)

25 Å³ (W)

Interface crevices in the hTS monomer

→ Two relatively deep cavities and one shallow pocket
- not present in dimer

Analysis of the dimer interface – Transient interface pockets by MD –

See for example: Wong et al., Proteins, 61, 850, 2005 Eyrisch and Helms, J. Med. Chem. 50, 3457, 2007

Transient interface pockets?

\rightarrow MD simulations of the TS monomer

- AMBER 8, ff03
- 1HVY.pdb (A chain)
- No ligands
- NPSA* implicit water model
- 300 K, 7 ns
- heating in 3 steps
- reference MD with TIP3P water

* Wang and Wade, Proteins 50, 158, 2003

MD Trajectory analysis: Atomic fluctuations

MD Trajectory analysis: Conformational changes

90°

Initial structure Final frame NPSA Final frame TIP3P

1) Pockets changing size

4 ns: 80.8 Å³

Interface pocket dynamics

2) New pockets appearing

1) Aim: Examine the possibility to inhibit hTS by disrupting the obligate dimer.

- 1) Aim: Examine the possibility to inhibit hTS by disrupting the obligate dimer.
- 2) Predicted hot spots at the hTS interface (experiments in progress).

- 1) Aim: Examine the possibility to inhibit hTS by disrupting the obligate dimer.
- 2) Predicted hot spots at the hTS interface (experiments in progress).
- 3) Identified interface cavities in the hTS crystal structure.

- 1) Aim: Examine the possibility to inhibit hTS by disrupting the obligate dimer.
- 2) Predicted hot spots at the hTS interface (experiments in progress).
- 3) Identified interface cavities in the hTS crystal structure.
- 4) Performed MD simulations to find additional transient interface pockets at the monomer interface.

- 1) Aim: Examine the possibility to inhibit hTS by disrupting the obligate dimer.
- 2) Predicted hot spots at the hTS interface (experiments in progress).
- 3) Identified interface cavities in the hTS crystal structure.
- 4) Performed MD simulations to find additional transient interface pockets at the monomer interface.

Future:

- \rightarrow Use the identified pockets for virtual screening of ligand libraries.
- \rightarrow Test the ligands against hTS.

Acknowledgements

EML Research gGmbH, Heidelberg, Germany

- Dr. Rebecca Wade
- MCM Group

Financial support:

- Alexander von Humboldt Foundation
- Finnish Academy
- Finnish Cultural Foundation
- University of Kuopio
- Klaus Tschira Foundation
- EU
- Emil Aaltonen Foundation
- The Finnish Pharmacists' Association

Partners: University of Modena, Italy - Prof. Maria Paola Costi

INSERM/University Paris Sud, France - Prof. Hannu Myllykallio University of California San Francisco, USA

- Prof. Robert Stroud

Naxospharma, Italy

Molecular Discovery Ltd, UK

