Cytochrome P450 ferric heme parameters for GROMOS87


heme topology

(atom names according to FIGURE 2 in ref [4].)
atom numberatom nameGROMOS atom type el. chargecharge group
1FELJ FELJ 1.00000 1
2NA NP -0.40000 1
3NB NP -0.40000 1
4NC NP -0.40000 1
5ND NP -0.40000 1
6CHA CR61 0.10000 2
7C1A CB 0.00000 3
8C2A CB 0.00000 4
9C3A CB 0.00000 5
10C4A CB 0.00000 6
11CMA CH3 0.20000 7
12CAA CH2 0.00000 8
13CBA CH2 0.00000 9
14CGA C 0.27000 10
15O1A OM -0.63500 10
16O2A OM -0.63500 10
17CHB CR61 0.10000 11
18C1B CB 0.00000 12
19C2B CB 0.00000 13
20C3B CB 0.00000 14
21C4B CB 0.00000 15
22CMB CH3 0.20000 16
23CAB CR61 0.00000 17
24CBB CH2 0.00000 18
25CHC CR61 0.10000 19
26C1C CB 0.00000 20
27C2C CB 0.00000 21
28C3C CB 0.00000 22
29C4C CB 0.00000 23
30CMC CH3 0.20000 24
31CAC CR61 0.00000 25
32CBC CH2 0.00000 26
33CHD CR61 0.10000 27
34C1D CB 0.00000 28
35C2D CB 0.00000 29
36C3D CB 0.00000 30
37C4D CB 0.00000 31
38CMD CH3 0.20000 32
39CAD CH2 0.00000 33
40CBD CH2 0.00000 34
41CGD C 0.27000 35
42O1D OM -0.63500 35
43O2D OM -0.63500 35

Bonds:

bond number atom iatom jif 0:standard GROMOS parameters, if 1: new parameters(ignore)bond length [nm] force constant [kJ/nm**2/mol]
112100.209004.18400E+05
21310 0.209004.18400E+05
31410 0.209004.18400E+05
41510 0.209004.18400E+05
52700
62 1000
7 3 18 0 0
8 3 21 0 0
9 4 26 0 0
10 4 29 0 0
11 5 34 0 0
12 5 37 0 0
13 6 37 0 0
14 6 7 0 0
15 7 8 0 0
16 8 9 0 0
17 8 12 0 0
18 9 10 0 0
19 9 11 0 0
20 10 17 0 0
21 12 13 0 0
22 13 14 0 0
23 14 15 0 0
24 14 16 0 0
25 17 18 0 0
26 18 19 0 0
27 19 20 0 0
28 19 22 0 0
29 20 21 0 0
30 20 23 1 0 0.153003.34720E+05
31 21 25 0 0
32 23 24 0 0
33 25 26 0 0
34 26 27 0 0
35 27 28 0 0
36 27 30 0 0
37 28 29 0 0
38 28 31 1 0 0.153003.34720E+05
39 29 33 0 0
40 31 32 0 0
41 33 34 0 0
42 34 35 0 0
43 35 36 0 0
44 35 38 0 0
45 36 37 0 0
46 36 39 0 0
47 39 40 0 0
48 40 41 0 0
49 41 42 0 0
50 41 43 0 0
51 -21 1 1 0 0.220004.18400E+05

Bond angles

bond angle numberatom iatom jatom kif 0:standard GROMOS parameters, if 1: new parameters(ignore)bond angle [rad]force constant [kJ/rad**2/mol]
1 2 1 3 1 0 1.570800.41840E+03
2 3 1 4 1 0 1.570800.41840E+03
3 4 1 5 1 0 1.570800.41840E+03
4 2 1 5 1 0 1.570800.41840E+03
5 2 1 4 1 0 2.715560.41840E+03
6 3 1 5 1 0 2.715560.41840E+03
7 1 2 7 1 0 2.199110.41840E+03
8 1 2 10 1 0 2.199110.41840E+03
9 7 2 10 1 0 1.884960.37656E+03
10 1 3 18 1 0 2.199110.41840E+03
11 1 3 21 1 0 2.199110.41840E+03
12 18 3 21 1 0 1.884960.37656E+03
13 1 4 26 1 0 2.199110.41840E+03
14 1 4 29 1 0 2.199110.41840E+03
15 26 4 29 1 0 1.884960.37656E+03
16 1 5 34 1 0 2.199110.41840E+03
17 1 5 37 1 0 2.199110.41840E+03
18 34 5 37 1 0 1.884960.37656E+03
19 7 6 37 1 0 2.199110.41840E+03
20 2 7 8 1 0 1.884960.41840E+03
21 6 7 8 1 0 2.199110.41840E+03
22 2 7 6 1 0 2.199110.41840E+03
23 7 8 12 1 0 2.199110.41840E+03
24 9 8 12 1 0 2.199110.41840E+03
25 7 8 9 1 0 1.884960.41840E+03
26 8 9 11 1 0 2.199110.41840E+03
27 10 9 11 1 0 2.199110.41840E+03
28 8 9 10 1 0 1.884960.41840E+03
29 2 10 17 1 0 2.199110.41840E+03
30 9 10 17 1 0 2.199110.41840E+03
31 2 10 9 1 0 1.884960.41840E+03
32 8 12 13 1 0 1.937320.46024E+03
33 12 13 14 1 0 1.937320.46024E+03
34 13 14 16 1 0 2.042040.50208E+03
35 15 14 16 1 0 2.199110.50208E+03
36 13 14 15 1 0 2.042040.50208E+03
37 10 17 18 1 0 2.199110.41840E+03
38 3 18 17 1 0 2.199110.41840E+03
39 17 18 19 1 0 2.199110.41840E+03
40 3 18 19 1 0 1.884960.41840E+03
41 18 19 22 1 0 2.199110.41840E+03
42 20 19 22 1 0 2.199110.41840E+03
43 18 19 20 1 0 1.884960.41840E+03
44 19 20 23 1 0 2.199110.41840E+03
45 21 20 23 1 0 2.199110.41840E+03
46 19 20 21 1 0 1.884960.41840E+03
47 3 21 25 1 0 2.199110.41840E+03
48 20 21 25 1 0 2.199110.41840E+03
49 3 21 20 1 0 1.884960.41840E+03
50 20 23 24 1 0 2.199110.41840E+03
51 21 25 26 1 0 2.199110.41840E+03
52 4 26 25 1 0 2.199110.41840E+03
53 25 26 27 1 0 2.199110.41840E+03
54 4 26 27 1 0 1.884960.41840E+03
55 26 27 30 1 0 2.199110.41840E+03
56 28 27 30 1 0 2.199110.41840E+03
57 26 27 28 1 0 1.884960.41840E+03
58 27 28 31 1 0 2.199110.41840E+03
59 29 28 31 1 0 2.199110.41840E+03
60 27 28 29 1 0 1.884960.41840E+03
61 4 29 33 1 0 2.199110.41840E+03
62 28 29 33 1 0 2.199110.41840E+03
63 4 29 28 1 0 1.884960.41840E+03
64 28 31 32 1 0 2.199110.41840E+03
65 29 33 34 1 0 2.199110.41840E+03
66 5 34 33 1 0 2.199110.41840E+03
67 33 34 35 1 0 2.199110.41840E+03
68 5 34 35 1 0 1.884960.41840E+03
69 34 35 38 1 0 2.199110.41840E+03
70 36 35 38 1 0 2.199110.41840E+03
71 34 35 36 1 0 1.884960.41840E+03
72 35 36 39 1 0 2.199110.41840E+03
73 37 36 39 1 0 2.199110.41840E+03
74 35 36 37 1 0 1.884960.41840E+03
75 5 37 6 1 0 2.199110.41840E+03
76 6 37 36 1 0 2.199110.41840E+03
77 5 37 36 1 0 1.884960.41840E+03
78 36 39 40 1 0 1.937320.46024E+03
79 39 40 41 1 0 1.937320.46024E+03
80 40 41 43 1 0 2.042040.50208E+03
81 42 41 43 1 0 2.199110.50208E+03
82 40 41 42 1 0 2.042040.50208E+03
83 -21 1 2 1 0 1.780240.41840E+03
84 -21 1 3 1 0 1.780240.41840E+03
85 -21 1 4 1 0 1.780240.41840E+03
86 -21 1 5 1 0 1.780240.41840E+03
87 -22 -21 1 1 0 1.911140.25104E+03

Proper torsions

torsion numberatom iatom jatom katom l if 0:standard GROMOS parameters, if 1: new parameters(ignore) torsion [rad]force constant [kJ/rad**2/mol]periodicity
1 2 10 17 18 0 0
2 10 17 18 3 0 0
3 3 21 25 26 0 0
4 21 25 26 4 0 0
5 4 29 33 34 0 0
6 29 33 34 5 0 0
7 5 37 6 7 0 0
8 37 6 7 2 0 0
9 7 8 12 13 0 0
10 8 12 13 14 0 0
11 12 13 14 15 0 0
12 19 20 23 24 1 0 0.000004.18400E-01 2
13 27 28 31 32 1 0 0.000004.18400E-01 2
14 35 36 39 40 0 0
15 36 39 40 41 0 0
16 39 40 41 42 0 0
17-22-21 1 2 1 0 0.000000.00000E+00 4

Improper torsions

improper torsion numberatom iatom jatom k atom lif 0:standard GROMOS parameters, if 1: new parameters (ignore)torsion [rad]force constant [kJ/rad**2/mol]
1 1 710 2 1 00.150531.67360E+02
2 11821 3 1 00.150531.67360E+02
3 12629 4 1 00.150531.67360E+02
4 13437 5 1 00.150531.67360E+02
5 7 2 8 6 0 0
610 9 217 0 0
71819 317 0 0
821 32520 0 0
926 42725 0 0
102928 433 0 0
1134 53533 0 0
123736 5 6 0 0
13 8 7 912 0 0
14 9 81011 0 0
1519182022 0 0
1620192123 0 0
1727262830 0 0
1828272931 0 0
1935343638 0 0
2036353739 0 0
2113151614 0 0
2240424341 0 0
2321181923 0 0
2419 32123 0 0
2519211823 0 0
2629262731 0 0
2727 42931 0 0
2827292631 0 0
29 7 9 810 0 0
30 810 9 2 0 0
31 710 8 2 0 0
3218201921 0 0
33192120 3 0 0
34182119 3 0 0
3526282729 0 0
36272928 4 0 0
37262927 4 0 0
3834363537 0 0
39353736 5 0 0
40343735 5 0 0
41101817 2 0 0
42181017 3 0 0
43212625 3 0 0
44262125 4 0 0
45293433 4 0 0
46342933 5 0 0
4737 7 6 5 0 0
48 737 6 2 0 0
491921 323 0 0
502729 431 0 0
51 7 9 212 0 0
52 7 91012 0 0
5335373439 0 0
543537 539 0 0

Parameters of cysteine liganding to FE3+ of heme

(total charge -0.6e)

atom numberatom nameGROMOS atom type el. chargecharge group
1N N -0.28000 1
2H H 0.28000 1
3CA CH1 0.00000 2
4CB CH2 -0.10000 3
5SG S -0.50000 4
6C C 0.38000 5
7O O -0.38000 5


    Notes:

  1. The GROMOS87 template heme was used as a starting point
  2. All bond angles of the template were checked (many have wrong values !) and were corrected if necessary.
  3. The bonded parameters for the covalently bound cysteine were modelled according to the X-ray structure of the P450cam:camphor complex (PDB identifier: 2cpp).
  4. Improper dihedral parameters: various MD simulations were performed using the dihedral definitions of the GROMOS template. In these simulations, we observed that the heme unit bent considerably. In order to prevent these distortions, we added 32 additional improper dihedrals to make the heme more stiff.
    In simulations with this modified heme, the heme unit seems to keep enough flexibility. But when average structures are calculated from simulations, the heme plane is more or less flat and stays close to the crystal geometry.
  5. In the template, FE does not have Lennard-Jones interactions. We assigned LJ-parameters according to [1] where they were used in MD simulations of cytochrome P450cam with the AMBER force field. The new GROMOS atom type is called 'FELJ'.
  6. Electrostatic charges on the heme unit were assigned purely empirically. The charges on the propionate chains were assigned according to the ASP-residue in GROMOS87, the charge on the cysteine-sulfur was assigned as -0.5 e [1], and -0.1 e was assigned to the cysteine-CB. Therefore, the heme has a net charge of -1.4e in order to give a formal charge of -2.0e together with the cysteine ligand.
    In order to test+optimize the charges on FE/N and the ring system, we followed the procedure of Harris & Loew [2] : Short (10 ps) MD simulations were performed for the substrate-free crystal structure of P450cam (PDB identifier: 1phc) in which a water molecule is located at the position of the 6th FE-ligand.
    When the ab-initio derived charges of Jones [3] were used for FE and N, the distance between water oxygen and FE was too short (1.8 A compared to 2.3 A in the X-ray structure). We repeated the simulation with 5 different combinations of FE/N charges. The carbon atoms in the 5-membered rings were kept neutral, and low charges were assigned to the remaining carbon atoms (0.1e or 0.2e) so that the total charge on the heme adds up to -1.4e. The final values resulted in an average oxygen-Fe distance of 2.1 A.
  7. Parameters are given in the format of sgm files for the ARGOS program. For the covalent attachment of the heme to the cysteine, the cysteine atoms are represented by negative atom numbers vis: -21 for the sulphur and -22 for the CB atom.

References

[1] Collins et al., JACS, 113, 2736 (1991)

[2] Harris & Loew, JACS, 115, 8775 (1993)

[3] Jones et al., JACS, 115, 382 (1993)

[4] V.Helms & R.C.Wade Thermodynamics of Water Mediating Protein-Ligand Interactions in Cytochrome P450cam: A Molecular Dynamics Study Biophys. J. (1995) 69, 810-824.


Last Updated: April 27, 2000 3:34 pm

Privacy Imprint