1
R. Raag, H. Li, B. C. Jones, and T. L. Poulos.
Inhibitor-induced conformational change in cytochrome P450cam.
Biochemistry, 1993, 32, 4571-4578.

2
T. Poulos, B. C. Finzel, and A. J. Howard.
High-resolution crystal structure of Cytochrome P450cam.
J. Mol. Biol., 1987, 195, 687-700.

3
T. Poulos, B. C. Finzel, and A. J. Howard.
Crystal structure of substrate-free pseudomonas putida cytochrome P450cam.
Biochemistry, 1986, 25, 5314-5322.

4
A. Nicholls and B. Honig.
GRASP, version 1.3.6, Columbia University, New York.

5
G. Moeckel, T. Exner, M. Keil, and J. Brickmann.
Molecular modelling information transfer with vrml:.
In Proceedings of the Pacific Symposium on Biocomputing 1998, 1998, 327-338.

6
E. J. Mueller, P. J. Loida, and S. G. Sligar.
Cytochrome P450: Structure, mechanism and biochemistry.
In P. R. Ortiz de Montellano, editor, Twenty-five years of P450cam research: Mechanistic insights into oxygenase catalysis. Plenum Press, New York and London, 1995.

7
I. J. Dmochowski, B. R. Crane, J. J. Wilker and H. B. Gray.
Optical detection of cytochrome P450 by sensitizer-linked substrates.
Proc. Natl. Acad. Sci. USA., 1999, 96, 12987-12990.

8
K. G. Ravichandran, S. S. Boddupalli, C. H. Hasemann, J. A. Peterson, and J. Deisenhofer.
Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450s.
Science,1993, 261, 731.

9
S.-Y. Park, H. Shimizu, S. Adachi, A. Nagakawa, I. Tanaka, K. Nakahara, H. Shoun, E. Obayashi, H. Nakamura, T. Iizuka, and Y. Shiro.
Crystal structure of nitric oxide reductase from denitrifying fungus Fusarium Oxysporum.
Nat. Str. Biol., 1997, 4, 827.

10
E. Deprez, N. C. Gerber, C. Di Primo, P. Douzou, S. G. Sligar, and G. Hui Bon Hoa.
Electrostatic control of the substrate access channel in cytochrome P450cam.
Biochemistry, 1994, 33:14465-14468, 1994.

11
V. Lounnas and R. C. Wade.
The exceptionally stable salt-bridges in cytochrome P450cam have functional roles.
Biochemistry, 1997, 36, 5402-5417.

12
S. K. Ldemann, V. Lounnas, and R. C. Wade.
How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
J. Mol. Biol. , 2000, 303, 797-811 .

13
S. K. Ldemann, V. Lounnas, and R. C. Wade.
How do substrates enter and products exit the buried active site of cytochrome P450cam? 2. Steered molecular dynamics and adiabatic mapping of substrate pathways.
J. Mol. Biol. , 2000, 303, 813-830.

14
D. Walther.
Trends Biochem. Sci., 22:274-275, 1997.

15
T. P. Straatsma and J. A. McCammon.
Argos, a general vectorized molecular dynamics program.
J. Comp. Chem., 1990 11, 943-951.

16
B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus.
CHARMM: a program for macromolecular energy minimization and dynamics calculations.
J. Comp. Chem., 1983, 4, 187-217.

17
R. R. Gabdoulline, R. C. Wade, D. Walther.
MolSurfer: two-dimensional maps for navigating three-dimensional structures of proteins.
Trends Biochem. Sci., 1999, 24, 285-7.

18
H. Li and T. L. Poulos.
The structure of the cytochrome P450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid.
Nature Struct. Biol.,1997, 4, 140.

19
V. Helms, E. Deprez, E. Gill, C. Barret, G. Hui Bon Hoa, and R. C. Wade.
Improved binding of cytochrome P450cam substrate analogues designed to fill extra space in the substrate binding pocket.
Biochemistry, 1996, 35, 1485-1499.

20
T. C. Pochapsky, T. A. Lyons, S. Kazanis, T. Araraki, and G. Ratnaswamy.
A structure-based model for cytochrome P450cam-putidaredoxin interactions.
Biochimie, 1996, 78, 723-733. v