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Fourteen popular scoring functions, i.e., X-Score, DrugScore, five scoring functions in the Sybyl software
(D-Score, PMF-Score, G-Score, ChemScore, and F-Score), four scoring functions in the Cerius2 software
(LigScore, PLP, PMF, and LUDI), two scoring functions in the GOLD program (GoldScore and ChemScore),
and HINT, were tested on the refined set of the PDBbind database, a set of 800 diverse protein-ligand
complexes with high-resolution crystal structures and experimentally determinedKi or Kd values. The focus
of our study was to assess the ability of these scoring functions to predict binding affinities based on the
experimentally determined high-resolution crystal structures of proteins in complex with their ligands. The
quantitative correlation between the binding scores produced by each scoring function and the known binding
constants of the 800 complexes was computed. X-Score, DrugScore, Sybyl::ChemScore, and Cerius2::PLP
provided better correlations than the other scoring functions with standard deviations of 1.8-2.0 log units.
These four scoring functions were also found to be robust enough to carry out computation directly on
unaltered crystal structures. To examine how well scoring functions predict the binding affinities for ligands
bound to the same target protein, the performance of these 14 scoring functions were evaluated on three
subsets of protein-ligand complexes from the test set: HIV-1 protease complexes (82 entries), trypsin
complexes (45 entries), and carbonic anhydrase II complexes (40 entries). Although the results for the HIV-1
protease subset are less than desirable, several scoring functions are able to satisfactorily predict the binding
affinities for the trypsin and the carbonic anhydrase II subsets with standard deviation as low as 1.0 log unit
(corresponding to 1.3-1.4 kcal/mol at room temperature). Our results demonstrate the strengths as well as
the weaknesses of current scoring functions for binding affinity prediction.

INTRODUCTION

One of the key issues in structure-based drug discovery
is prediction of the binding affinities of candidate ligand
molecules to the target molecules. This is often referred to
as the “scoring problem”. A whole spectrum of methods has
been developed to solve this problem, and a group of
approaches called “scoring functions” has gained popular-
ity.1-20 A scoring function computes the fitness score of a
ligand molecule to its target protein based on a given
complex structure. These empirical scoring functions do not
require extensive conformational sampling and are very fast
in binding affinity prediction, and some of them were also
found to have reasonable accuracy. For these reasons, they
have extensively been applied in high-throughput virtual
library screening and detailed molecular docking studies. Not
surprisingly, several recently developed molecular docking
programs, such as FlexX,21 GOLD,22,23 and GLIDE,24 have
employed at least one scoring function as their internal
scoring engine.

A number of scoring functions have been developed in
the past decade, and a systematic and objective evaluation
of their performance is clearly needed. Indeed, several recent
studies25-30 have offered comparative evaluations of a

number of scoring functions in the context of molecular
docking. For example, we recently tested 11 scoring func-
tions on 100 selected protein-ligand complexes for their
abilities to identify the experimentally determined binding
mode in complex with their target proteins among an
ensemble of computer-generated decoys.31 Another study
with a similar theme was also published very recently.32 But
docking the ligand molecule correctly onto the target protein
is only part of the scoring problem. Ideally, the binding score
computed for a ligand molecule to its protein should also
reflect its experimentally measured binding affinity. In our
previous study,31 we also evaluated the correlations between
their scores of those 11 scoring functions and the experi-
mentally determined binding constants of the 100 protein-
ligand complexes. It was found that X-Score, DrugScore,
PLP in Cerius2, and G-Score in Sybyl provided better
correlations than the other scoring functions in our test.
However, that conclusion was obtained on a moderate-sized
test set and should be treated with caution. A much larger
test set is needed to arrive at a more objective conclusion in
the performance of today’s scoring functions.

For many years, the availability of a large and high-quality
set of high-resolution, experimentally determined three-
dimensional (3D) structures of proteins in complex with
ligands and their experimentally measured binding constants
has been a bottleneck in scoring function development and
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validation. Table 1 provides a summary of the publicly
available collections of such information reported since the
1990s. One can see clearly that the total number of such
protein-ligand complexes has only increased to 200-300
since 1994. This bottleneck, however, has been overcome
recently. Through a vigorous effort, we screened the entire
Protein Data Bank (PDB)36 to identify valid protein-ligand
complexes and then systematically checked the original
references of these protein-ligand complexes to collect the
experimentally measured binding affinities. Our effort led
to the creation of the PDBbind database,35 which provided
a compilation of binding affinities for nearly 1400 protein-
ligand complexes in the PDB. After applying several
additional criteria to filter out the entries that were not fully
suitable for docking and scoring studies, such as covalently
bound complexes, a set of 800 protein-ligand complexes
were selected, which we called the “refined set”. This data
set is much larger in size and also of better quality than any
of the previous compilations of this kind.

In our present study, this “refined set” has been used to
evaluate the performance of 14 popular scoring functions
for their ability to predict the experimentally determined
binding affinities. These include those 11 scoring functions
evaluated in our previous study, i.e., X-Score,18 Drug-
Score,14,15five scoring functions in the Sybyl software,37 and
four scoring functions in the Cerius2 software.38 Another
three scoring functions, i.e., GoldScore and ChemScore
implemented in the GOLD program,22,23 and HINT,17 have
also been included in our test. Our goal is to provide an
objective assessment of the current scoring functions for their
ability to predict the experimentally measured binding
affinities for diverse ligand-protein complexes based upon
high-resolution crystal structures.

METHODS

Construction of the Test Set.In this study, we used the
“refined set” from the PDBbind database (version 2002)35

as the test set to assess all of these 14 scoring functions. It
consists of 800 diverse complexes formed between small
organic molecules and over 200 different types of proteins.

The detailed selection criteria of this set of protein-ligand
complexes have been described in our recent work.35 In brief,
(i) all of the structures are determined by X-ray crystal-
lography with resolution better or equal to 2.5 Å; (ii) all of
the complexes are noncovalently bound complexes; (iii) all
of the complexes are binary complexes; and (iv) all of the
ligand molecules only consist of common organic elements,
i.e., C, N, O, S, P, H and halogens, with molecular weights
below 1000. These quality-control criteria were applied to
eliminate those complexes that are not fully suitable for
docking/scoring studies. All of the 800 complexes have
experimentally measuredKd or Ki values. We use the
negative logarithm ofKd or Ki value (-logKd or -logKi) as
the binding affinity scale in this paper and refer to it as
“binding constant”. The binding constants of this set of
protein-ligand complexes range from 0.60 to 13.96, span-
ning over 13 orders of magnitude, with a mean value of 6.46
and a standard deviation of 2.20.

Coordinates of all these complexes were downloaded from
the Protein Data Bank.36 For the convenience of computation,
each complex was split into a protein molecule and a ligand
molecule. All water molecules included in the crystal
structure were removed since they are not considered by any
of the scoring functions in our test. Metal ions, if residing
inside the binding pocket and coordinately bound to the
ligand and the protein, were saved as part of the protein.
Hydrogen atoms were added to both of the proteins and the
ligands. Atomic types and bond types of the ligand molecules
were inspected and modified manually to ensure their
correctness. The protein was assigned AMBER all-atom
charges, and the ligand was assigned MMFF94 charges. No
additional structural optimization was performed on either
the protein or the ligand to keep their coordinates exactly
the same as in the original PDB file. To meet the require-
ments of different scoring functions, the protein was saved
in the PDB format and the Mol2 format, while the ligand
was saved in the Mol2 format and the MDL SD (MACCS)
format. All of the above work was done on an SGI Octane2
workstation using the Sybyl software.37

The entire test set, including the PDB codes, experimental
binding constants, and the processed coordinate files of these
800 protein-ligand complexes, is available from the PDB-
bind Web set at http://www.pdbbind.org/.

Scoring Functions under Test.Fourteen popular scoring
functions were chosen to be evaluated in this study, including
two standalone scoring functions, X-Score (version 1.1) and
DrugScore (version 1.2), five scoring functions (F-Score,
G-Score, D-Score, PMF-Score, and ChemScore) imple-
mented in the CScore module in the Sybyl software (version
6.9), four scoring functions (LigScore, PLP, PMF, and LUDI)
implemented in the Ligand Scoring module in the Cerius2
software (version 4.6), two scoring functions (GoldScore and
ChemScore) in the GOLD program (version 2.1), and the
HINT scoring function implemented in the HINT program
package (version 3.06). These scoring functions can be
roughly classified into three groups: (i) empirical scoring
functions, including X-Score, F-Score, ChemScore, LigScore,
PLP, LUDI, and HINT, (ii) knowledge-based potentials,
including DrugScore and PMF, and (iii) force-field based
approaches, including D-Score and GoldScore. A brief
review of these scoring functions is given in the Supporting
Information. Special parameters or treatments applied in our

Table 1. Collections of Protein-Ligand Complexes with Known
Binding Affinities in Prior to the PDBbind Database

approachesa
year of
publish

total number of
protein-ligand
complexes cited refs

Böhm (Score1) 1994 54 2
Jain 1996 34 3
Head et al. (VALIDATE) 1996 65 4
Eldridge et al. (ChemScore) 1997 112 5, 6
Böhm (Score2) 1998 94 7
Wang et al. (SCORE) 1998 181 8
Muegge et al. (PMF) 1999 225 9-11
Mitchell et al. (BLEEP) 1999 90 12, 13
Gohlke et al. (DrugScore) 2000 ∼100 14, 15
Brooks et al. (LPDB) 2001 ∼200 33
Ishchenko et al. (SMoG2001) 2002 119 16
Kellogg et al. (HINT) 2002 53 17
Wang et al. (X-Score) 2002 230 18
Mitchell et al. (PLD) 2003 ∼ 270 34

a LPDB (Ligand-Protein Database) and PLD (Protein-Ligand
Database) are Web-based databases of protein-ligand complexes; all
of the other approaches are scoring functions.
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work are also explained in the Supporting Information.
All of the 14 scoring functions were applied to compute

the binding scores of the 800 protein-ligand complexes in
the test set. For the scoring functions in Sybyl and Cerius2,
the computation was automated using command scripts. For
X-Score, DrugScore, and GOLD, the computation was
automated through batch jobs. Since binding affinities are
expressed in-logKd units in this paper, we changed the sign
of some scoring functions to ensure that a higher score
always indicates a better binding affinity. It needs to be
pointed out that in our study these 14 scoring functions were
evaluated primarily based on the crystal structures of
protein-ligand complexes. Even with a high resolution, some
crystal structures may still have clashes between the proteins
and the ligand molecules, which may be problematic for
certain scoring functions to yield reasonable binding scores.
An alternative approach would be to use minimized complex
structures, derived from the crystal structures, in binding
score computation. We applied this approach to the two
scoring functions implemented in the GOLD program, but
did not attempt it on the other scoring functions. Further
discussion is given in the following Results and Discussion
section.

Evaluation Methods. The performance of each scoring
function set was measured by the linear correlation between
its binding scores and the experimental binding constants of
the protein-ligand complexes in the test set:

In the above regression equation,y denotes the experi-
mental binding constants (in-logKi units), whilex denotes
the computed binding scores given by a scoring function.
To provide quantitative measurements of the correlation,
Pearson’s correlation coefficient (Rp), standard deviation
(SD), and unsigned mean error (ME) in regression were
computed as

The regression statistics of all of the 14 scoring functions
are summarized in Table 2.

Besides computing the quantitative correlation between
binding scores and experimental binding affinities, we also
adopted a simple scheme to qualitatively assess a given
scoring function for its ability to separate low-affinity
complexes from high-affinity complexes. Given the fact that
most of the samples in our test set have binding constants
between 2 and 11, we divided this continuous binding affinity
spectrum into three groups: the low-affinity group (-logKd

< 5.0), the medium-affinity group (5.0e -logKd e 8.0),
and the high-affinity group (-logKd > 8.0). The medium-

affinity group, withKi or Kd values from 10µM to 10 nM,
represents the binding affinity range of a typical lead
compound in drug discovery. For each sample in the test
set, we compared its experimentally determined binding
constant and computed binding constant (the expectation
value ofy in eq 1): if the latter one fell in the same binding
affinity group as the former one, a correct classification was
counted. The success rate of each scoring function on each
binding affinity group is listed in Table 3.

The above tests were performed on the entire test set,
which consists of ligands with diverse chemical structures
bound to more than 200 different proteins. Since it is also
of great interest to examine how well a scoring function
performs on ligand molecules bound to the same target
protein, we evaluated these 14 scoring functions on the three
most populated proteins in the test set, i.e., HIV-1 protease,
trypsin, and carbonic anhydrase II (see Table 5). The
regression statistics of each scoring function was recomputed
on these three subsets of protein-ligand complexes. Besides
the properties computed with eqs 2 to 4, we also computed
the Spearman rank-order correlation coefficient (Rs) for each
scoring function on these three subsets as an additional
measure of their performance.

Spearman correlation coefficient provides a quantitative
measurement of the correlation between two sets of ranks.
In our case,Ri is the rank of complexi determined by its
experimental binding constant, whileSi is the rank deter-
mined by a scoring function. The regression statistics of the
14 scoring functions on these three subsets of protein-ligand

y ) ax + b (1)

Rp )

∑
i

(xi - xj)(yi - yj)

x∑
i

(xi - xj)2x∑
i

(yi - yj)2

(2)

SD) x∑
i

[yi - (axi + b)]2/(N - 2) (3)

ME ) ∑
i

|yi - (axi + b)|/N (4)

Table 2. Correlation Evaluation of 14 Scoring Functions on the
Entire Test Seta

scoring function Nb Rp SD ME a b

X-Score::HPScore 800 0.514 1.89 1.47 0.71 2.03
X-Score::HMScore 800 0.566 1.82 1.42 0.92 1.18
X-Score::HSScore 800 0.506 1.90 1.48 0.93 1.24
DrugScore::Pair 800 0.473 1.94 1.51 4.9× 10-6 4.10
DrugScore::Surf 800 0.463 1.95 1.53 7.2× 10-5 4.48
DrugScore::Pair/Surf 800 0.476 1.94 1.50 4.7× 10-6 4.09
Sybyl::D-Score 800 0.322 2.09 1.67 9.7× 10-3 5.00
Sybyl::PMF-Score 785 0.147 2.16 1.74 6.4× 10-3 5.92
Sybyl::G-Score 800 0.443 1.98 1.56 9.1× 10-3 4.34
Sybyl::ChemScore 797 0.499 1.91 1.50 9.1× 10-2 3.90
Sybyl::F-Score 732 0.141 2.19 1.77 2.1× 10-2 6.06
Cerius2::LigScore 717 0.406 2.00 1.57 0.79 4.63
Cerius2::PLP1 800 0.458 1.96 1.52 2.3× 10-2 4.09
Cerius2::PLP2 800 0.455 1.96 1.53 2.6× 10-2 3.93
Cerius2::PMF 795 0.253 2.13 1.71 1.1× 10-2 5.37
Cerius2::LUDI1 790 0.334 2.08 1.66 2.6× 10-3 4.88
Cerius2::LUDI2 799 0.379 2.04 1.62 4.2× 10-3 4.28
Cerius2::LUDI3 800 0.331 2.08 1.67 3.2× 10-3 4.68
GOLD::GoldScore 694 0.285 2.16 1.72 2.4× 10-2 5.33
GOLD::GoldScore•opt 772 0.365 2.06 1.63 3.0× 10-2 4.70
GOLD::ChemScore 741 0.423 2.00 1.56 8.5× 10-2 4.65
GOLD::ChemScore•opt 762 0.449 1.96 1.52 8.6× 10-2 4.41
HINT 800 0.330 2.08 1.65 0.20 6.36

a The relatively successful scoring functions in this test are in italics.
b Number of protein-ligand complexes receiving positive binding scores
from this scoring function. Only such complexes were included in
regression analysis.

Rs ) 1 -

6 × ∑
i

(Ri - Si)
2

n3 - n
(5)
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complexes are summarized in Table 6.

RESULTS AND DISCUSSION

Performance on the Entire Test Set.As shown in Table
2, four scoring functions, i.e., X-Score, DrugScore, Sybyl::
ChemScore, and Cerius2::PLP, demonstrated moderate cor-
relations (Rp ) 0.45-0.57) between their binding scores and
the experimentally determined binding constants for the
entire 800 protein-ligand complexes. These four scoring

functions reproduced the known binding constants of the
entire test set with a standard deviation of 1.8-2.0 log units
(corresponding to 2.5-2.7 kcal/mol in terms of binding free
energy at room temperature). Scatter plots of experimental
binding constants vs computed binding scores for these four
scoring functions are shown in Figure 1. The standard
deviations and average errors produced by these four scoring
functions were generally 0.2-0.3 log units lower than the
ones produced by the other scoring functions. It needs to
point out that the scoring functions in our test actually
demonstrated a continuous spectrum of accuracy level. The
criterion ofRp > 0.45 was chosen in a more or less subjective

Table 3. Qualitative Assessment of 14 Scoring Functions on Three Binding Affinity Groups

success rate in classificationa

scoring function
low-affinity group

(-logKd < 5.0)
medium-affinity group
(5.0e -logKd e 8.0)

high-affinity group
(-logKd > 8.0)

X-Score::HPScore 33/205) 16% 358/402) 89% 48/193) 25%
X-Score::HMScore 41/205) 20% 348/402) 87% 65/193) 34%
X-Score::HSScore 29/205) 14% 350/402) 87% 53/193) 27%
DrugScore::Pair 24/205) 12% 359/402) 89% 45/193) 23%
DrugScore::Surf 11/205) 5% 362/402) 90% 45/193) 23%
DrugScore::Pair/Surf 24/205) 12% 358/402) 89% 47/193) 24%
Sybyl::D-Score 0/205) 0% 384/402) 96% 2/193) 1%
Sybyl::PMF-Score 0/196) 0% 395/396) 99% 0/193) 0%
Sybyl::G-Score 12/205) 6% 359/402) 89% 30/193) 16%
Sybyl::ChemScore 38/204) 19% 349/400) 87% 40/193) 21%
Sybyl::F-Score 0/182) 0% 362/362) 100% 0/188) 0%
Cerius2::LigScore 11/186) 6% 340/366) 93% 16/165) 10%
Cerius2::PLP1 24/205) 12% 364/401) 91% 35/193) 18%
Cerius2::PLP2 30/205) 15% 363/402) 90% 32/193) 17%
Cerius2::PMF 0/202) 0% 390/400) 97% 3/193) 2%
Cerius2::LUDI1 1/203) 0% 379/394) 96% 9/193) 5%
Cerius2::LUDI2 6/205) 3% 378/401) 94% 15/193) 8%
Cerius2::LUDI3 1/205) 0% 387/402) 96% 9/193) 5%
GOLD::GoldScore 0/178) 0% 331/339) 98% 4/177) 2%
GOLD::GoldScore•opt 3/200) 1% 366/385) 95% 11/187) 6%
GOLD::ChemScore 8/177) 5% 345/376) 92% 37/188) 20%
GOLD::ChemScore•opt 20/187) 11% 346/386) 90% 38/189) 20%
HINT 2/205) 1% 388/402) 97% 11/193) 6%

a The denominator is the total number of samples that an individual scoring function could compute in a certain group; the numerator is the total
number of correctly classified samples in this group by the given scoring function.

Table 4. Top Outliers in the Consensus of X-Score, DrugScore,
Sybyl::ChemScore, and Cerius2::PLP

PDB
code

-logK
(exp.)a

mean
errorb protein in the complex

7cpa 13.96 6.24 carboxypeptidase A
1ctu 11.92 5.95 cytidine deaminase
1swn 12.00 5.49 streptavidin
1qpb 1.36 5.46 pyruvate decarboxylase
1els 10.82 5.41 enolase
1swk 12.00 5.20 streptavidin
1duv 11.80 4.98 ornithine transcarbamoylase
1dqx 11.05 4.80 orotidine 5′-monophosphate decarboxylase
1lor 11.06 4.70 orotidine 5′-monophosphate decarboxylase
1zsb 0.60 4.57 carbonic anhydrase II
1if7 10.52 4.47 carbonic anhydrase II
1rbo 10.55 4.36 ribulose bisphosphate carboxylase/oxygenase
1xli 1.48 4.34 xylose isomerase
1n4k 10.05 4.33 inositol 1,4,5-trisphosphate receptor I
1b8o 10.64 4.29 purine nucleoside phosphorylase
1m0n 2.22 4.25 2,2-dialkylglycine decarboxylase
1bnn 10.00 4.20 carbonic anhydrase II
1m0o 2.31 4.09 2,2-dialkylglycine decarboxylase
5sga 2.85 3.98 proteinase A

a Experimentally measuredKd or Ki values in negative logarithm
units. b The average discrepancy (in log units) between the experimental
binding constant and the computed binding constants given by X-Score::
HMScore, DrugScore::Pair, Sybyl::ChemScore, and Cerius2::PLP2.

Table 5. Three Subsets of Protein-Ligand Complexes Extracted
from the Test Set

HIV-1 protease subset (82 complexes)

1a30 1a94 1a9m 1aaq 1ajv 1ajx 1b6j 1b6k 1b6l 1b6m
1b6n 1b6o 1b6p 1bdq 1bv7 1bv9 1bwa 1bwb 1c6y 1c70
1d4k 1d4l 1d4s 1d4y 1dmp 1g2k 1g35 1hbv 1hih 1hii
1hiv 1hos 1hpo 1hps 1hpv 1hpx 1hsg 1hsh 1htf 1htg
1hvh 1hvi 1hvj 1hvk 1hvl 1hvr 1hvs 1hwr 1hxw 1ivp
1izh 1izi 1k6c 1k6p 1k6t 1k6v 1kzk 1mes 1met 1meu
1mtr 1ody 1ohr 1pro 1qbr 1qbs 1qbt 1qbu 1sbg 1siv
1tcw 1tcx 2bpv 2bpy 3aid 4hvp 5hvp 5upj 6upj 7hvp
7upj 8hvp

trypsin subset (45 complexes)

1bra 1c1r 1c2d 1c5p 1c5q 1c5s 1c5t 1ce5 1f0t 1f0u
1g3b 1g3d 1g3e 1ghz 1gi2 1gi4 1gi5 1gi6 1gj6 1h4w
1j14 1j16 1j17 1k1i 1k1j 1k1l 1k1m 1k1n 1ppc 1pph
1qb1 1qb6 1qb9 1qbn 1qbo 1smf 1tng 1tnh 1tni 1tnj
1tnk 1tnl 1xuf 2bza 3ptb

carbonic anhydrase II subset (40 complexes)

1a42 1avn 1bcd 1bn1 1bn3 1bn4 1bnn 1bnq 1bnt 1bnu
1bnv 1bnw 1bzm 1cil 1cim 1cin 1cnw 1cnx 1cny 1g1d
1g45 1g46 1g48 1g4j 1g4o 1g52 1g53 1g54 1h4n 1i9n
1i9p 1if7 1if8 1okl 1okn 1yda 1ydb 1ydd 1zsb 2h4n
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way. The accuracy of some other scoring functions were
actually very close to this cutoff, such as Sybyl::G-Score.
Some scoring functions, however, demonstrated basically no
correlation between their scores and the experimental binding
constants with very lowRp values.

Table 3 summarizes the performance of these 14 scoring
functions when the test set was divided into three binding
affinity groups. This test was designed to evaluate if a given
scoring function can really differentiate low-affinity and high-
affinity complexes from the others, which would be useful
in database virtual screening projects. In this test, a number
of scoring functions showed near-zero success rates for the
low-affinity group and the high-affinity group. In contrast,
the four scoring functions we selected above were able to
identify some low-affinity and high-affinity complexes
correctly, although their success rates for these two groups
were only modest.

In our previous study,31 we observed that X-Score,
DrugScore, and Cerius2::PLP exhibited relatively better
performance in binding affinity prediction on 100 selected
protein-ligand complexes than other scoring functions. In
this study, essentially the same “winners” were identified.
In a study published very recently,32 Ferrara et al. reported
that ChemScore outperformed the other scoring functions
implemented in the CScore module of Sybyl in binding
affinity prediction on a total of 189 protein-ligand com-
plexes. This is consistent with our observation in this study.

Another aspect that needs to be discussed is the robustness
of a scoring function, which is as important as its accuracy.

In a structure-based drug design project, one cannot expect
that binding affinity prediction is always performed based
on high-resolution, experimentally determined complex
structures. It is therefore important for a scoring function to
tolerate at least minor inaccuracies in a given complex
structure and yet produce a good estimate of the binding
affinity. In our study, we observed that some scoring
functions failed to produce overall positive (favorable)
binding scores for a certain number of protein-ligand
complexes in the test set, e.g. Sybyl::F-Score failed in 68
cases, Cerius2::LigScore failed in 83 cases, GOLD::Gold-
Score failed in 106 cases, and GOLD::ChemScore failed in
59 cases. All of these scoring functions have a term for
computing the dispersion/repulsion (van der Waals) interac-
tions between the protein and the ligand. This term is helpful
for docking the ligand molecule into its protein binding site
since it penalizes the models having steric clashes between
the protein and the ligand. However, it is not so unusual to
observe bad contacts between protein and ligand molecule
even in high-resolution crystal structures. When a scoring
function of this type is applied to such a structure, the
repulsion energy computed between the clashed atom pairs
can overwhelm the other terms in the scoring function and
lead to an overall negative binding score: a phenomenon
we call “repulsion outbreak”. The negative binding scores
in such cases were often in an unrealistic range. As a
consequence, inclusion of these cases in regression analysis
would drive the statistics to be completely meaningless. To
circumvent this problem, if a scoring function failed to yield

Figure 1. Binding constants versus the binding scores computed by (a) X-Score::HMScore, (b) DrugScore::Pair, (c) Sybyl::ChemScore,
and (d) Cerius2::PLP2 on the entire test set (N ) 800).
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overall positive binding scores for certain complexes in the
test set, we simply excluded them from our consideration
and performed the regression analysis using the rest of the
test set. The total number of “valid” complexes each
individual scoring function could compute is also given in
Table 2.

As one can see in Table 2, the four relatively successful
scoring functions we selected above were not only able to
provide more accurate predictions but also robust enough to
compute almost all of the complexes in the test set using
the crystal structures directly without optimization (Sybyl::
ChemScore failed in only three cases). We would like to
mention that one method for tackling the “repulsion out-
break” problem is to set a ceiling to the repulsion energy
computed between any pair of atoms so that the overall
binding score will not be compromised. This simple yet
effective method is indeed used in X-Score, Sybyl::D-Score,
and Sybyl::G-Score in their van der Waals interaction terms.
As revealed in Table 2, all of these three scoring functions
had no problem in computing all of the 800 complexes in
our test set.

It is also reasonable to expect that an optimization of the
input complex structure to a local minimum prior to binding
score computation, ideally driven by the same scoring
function, will help to release the repulsion energies. In our
study, we were able to perform such structural optimization
for GOLD::GoldScore and GOLD::ChemScore using the
facilities provided by the GOLD program. With this treat-
ment, the failed cases for these two scoring functions were
reduced considerably to 28 (GOLD::GoldScore•Opt) and
38 (GOLD::ChemScore•Opt), respectively. As a result of
removing the repulsion energies in their binding scores, the
accuracy of these two scoring functions was also improved.
GOLD::ChemScore•Opt even demonstrated an accuracy
level close to the four relatively successful scoring functions
we selected above. In our study, however, we did not test
other scoring functions on minimized structures for a number
of reasons. First, as indicated above, some scoring functions
did not need such treatment on the input structures and yet
produced reasonable results. Second, minimizing a crystal
structure is by no means a trivial job since a number of
technical issues must be considered: which force field and
what parameters should be chosen for this purpose? Should
the complex structure be minimized in vacuum, with a
continuum solvation model, or with the explicit water
molecules observed in the crystal structure? How to control
the minimization process so that the minimized structure will
not deviate too much from the original crystal structure? Even
if all these issues can be successfully addressed, it still
remains debatable if a minimized structure is always more
appropriate than an experimentally determined structure for
binding affinity prediction. Nevertheless, based on what we
observed for the two scoring functions in the GOLD program,
it appears that a prior structural minimization, if performed
properly, will be helpful especially for the scoring functions
which may have the “repulsion outbreak” problem.

Some of the scoring functions in our test are different
implementations of the same scoring function, for example,
Sybyl::G-Score versus GOLD::GoldScore, Sybyl::Chem-
Score versus GOLD::ChemScore, and Sybyl::PMF-Score
versus Cerius2::PMF. Our results showed that different
implementations of the same scoring function could give

notably different results (Tables 2 and 3). It is understandable
since some implementations have their own modifications
to the original scoring function. For example, the ChemScore
implemented in GOLD differs from the original ChemScore
by including additional terms. End-users of these scoring
functions should be very cautious of this fact. It is interesting
to observe that Sybyl::G-Score out-performed GOLD::
GoldScore in our test even when a local structural optimiza-
tion was performed, i.e., GOLD::GoldScore•opt. We believe
this should be credited to the method in Sybyl::G-Score for
handling the repulsion break problem.

Another related issue is that some of the scoring functions
in our test, including X-Score, DrugScore, Cerius2::PLP, and
Cerius2::LUDI, offer multiple variations for binding score
computation. All of these variations have been tested in our
study. As shown in Tables 2 and 3, although generally no
particular variation significantly outperforms other available
variations offered by the same scoring function, some
interesting observations are noted. For X-Score, HMScore
exhibited marginally but consistently better statistics than
either HPScore or HSScore. For DrugScore, although the
combination of pairwise and surface-based potentials (“Pair/
Surf”) was supposed to be more advanced, using the pairwise
potentials alone (“Pair”) was actually equally good. Since
applying the “Pair” variation does not need the additional
computation of surface areas, it may even be preferred in
practice. For Cerius2::PLP, the difference between its two
variations, PLP1 and PLP2, is not clear due to lack of
documentation. Their performance was however on the same
level. As for Cerius2::LUDI, the Cerius2 user manual
mentions that LUDI2, unlike the other two variations, was
actually calibrated with a set of protein-ligand complexes
with known binding constants. In our test, LUDI2 indeed
produced slightly better statistical results than LUDI1 or
LUDI3.

Some of the scoring functions in our test, especially the
empirical scoring functions such as X-Score, ChemScore,
and LUDI, were calibrated using a training set of protein-
ligand complexes from the PDB. Although the test set used
in this study, i.e., the PDBbind refined set, was the outcome
of a project totally independent to any scoring function, it
does overlap with the training sets used by those empirical
scoring functions. For example, there are 140 overlapping
samples between the test set used in this study and the
original training set of X-Score. Ideally, such overlapping
samples should be removed from the test set to provide an
unbiased assessment on the performance of these scoring
functions. In our study, however, we did not attempt to do
this since those overlapping samples only account for a small
fraction of our test set. We expected that those overlapping
samples would not have a significant impact on the overall
statistics. Indeed, the regression analysis of X-Score after
removing the 140 overlapping samples gave the following:
for X-Score::HPScore,N ) 660, Rp ) 0.493,SD ) 1.91,
ME ) 1.49; for X-Score::HMScore,N ) 660,Rp ) 0.542,
SD) 1.85,ME ) 1.44; for X-Score::HSScore,N ) 660,Rp

) 0.484,SD ) 1.92,ME ) 1.50. Compared to the results
computed on the entire test set (see Table 2), no significant
difference was observed. For other scoring functions, it
should have an even less significant impact since their
training sets are even smaller than that used by X-Score.
Another technical problem preventing us from identifying
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and eliminating overlapping samples in our test set is that
not every empirical scoring function has revealed its training
set.

The last point we want to make in this section concerns
outliers. As can be seen from Table 2, the overall perfor-
mance even for those relatively successful scoring functions
(Rp ) 0.45-0.57, SD ) 1.8-2.0 log units) was not very
satisfactory. We found that these seemingly disappointing
statistics were largely caused by a small number of significant
outliers. We have identified the top 5% outliers for X-Score::
HMScore, DrugScore::Pair, Sybyl::ChemScore, and Cerius2::
PLP2, respectively, by checking the errors between the
experimental and computed binding constants. The outliers
in the consensus of these four scoring functions are listed in
Table 4. We noticed that the average errors concerning these
outliers were as large as 4-6 log units. These results showed
that there is still much room left for the improvement of
today’s scoring functions.

The cause of these significant outliers could be two-fold.
Because of the complexity of the protein-ligand binding
process, binding affinity prediction in general remains a very
difficult task. The remarkable structural diversity for both
proteins and ligands in our test set and the very wide range
of binding affinities makes it an extremely difficult task for
any scoring function. Furthermore, some of the protein-
ligand complexes in our test set do have extraordinary
features. For example, there are two streptavidin-biotin
complexes, 1SWN and 1SWK, among the 19 outliers listed
in Table 4. Biotin is well-known to achieve exceptionally
high affinity to streptavidin with relatively simple chemical
structures. A scoring function trained to handle “normal”
protein-ligand complexes therefore tends to fail in such
cases.

The other possible reason may arise from experimentally
determined binding affinity data. For example, the PDB entry
1ZSB, which is a complex formed between carbonic anhy-

drase II (E117Q mutant) and a transition state analogue
acetazolamide, was reported to have an extremely low
binding affinity with a Kd value of 250 mM (-logKd )
0.60),39 the lowest binding affinity in our test set. However,
there are several other complexes formed between carbonic
anhydrase II mutants and acetazolamide in our test set, all
of which exhibit much higher binding affinities, e.g. 1YDA
(-logKd ) 6.55), 1YDB (-logKd ) 8.24), 1YDD (-logKd

) 7.07), and 2H4N (-logKd ) 8.70). It is unclear why the
ligand-protein complex in 1ZSB would have such low
binding affinity. Ideally, such suspicious binding affinity data
should be identified and confirmed with their original
authors. At the present time, we were unable to carry out
such a task due to the large size of our test set. Another
issue is that binding assays are not performed under the same
conditions. Difference in temperature, pH level, buffer, and
other factors may lead to notable discrepancies in binding
affinity measurement. One should keep all of these issues
in mind when interpreting the evaluation results in this study.

Performance on Three Individual Subsets.We have
described the performance of each individual scoring function
for their ability to reproduce the experimentally determined
binding affinities of 800 ligand-protein complexes consisting
of more than 200 different proteins. However, one typically
works with a particular target protein in a structure-based
drug design project. Therefore, it is of great interest to
evaluate the performance of today’s scoring functions on a
specific protein target. Accordingly, we have evaluated the
performance of these 14 scoring functions on three subsets
of protein-ligand complexes.

The HIV-1 Protease Subset.There are 82 HIV-1 protease
complexes (including wide type and mutants) in our test set,
with experimental binding constants ranging from 4.30 to
11.40 with a mean value of 8.49 and a standard deviation of
1.39 (all in-logKd units). If using the Pearson coefficients
(Rp) as the criterion, almost all of the scoring functions,

Table 6. Correlation Evaluation of 14 Scoring Functions on Three Subsets of Protein-Ligand Complexesa

HIV-1 protease trypsin carbonic anhydrase IIb

scoring function N Rp SD ME Rs N Rp SD ME Rs N Rp SD ME Rs

X-Score::HPScore 82 0.429 1.25 1.01 0.436 45 0.754 1.15 0.88 0.725 39 0.544 1.18 0.85 0.547
X-Score::HMScore 82 0.379 1.28 1.04 0.33445 0.823 0.99 0.75 0.824 39 0.495 1.23 0.95 0.341
X-Score::HSScore 82 0.400 1.27 1.05 0.322 45 0.753 1.15 0.91 0.766 39 0.417 1.28 0.91 0.448
DrugScore::Pair 82 0.377 1.28 1.04 0.315 45 0.780 1.09 0.82 0.818 39 0.622 1.10 0.83 0.501
DrugScore::Surf 82 0.401 1.27 1.02 0.317 45 0.674 1.29 0.99 0.753 39 0.512 1.21 0.97 0.269
DrugScore::Pair/Surf 82 0.384 1.28 1.04 0.322 45 0.780 1.09 0.82 0.807 39 0.623 1.10 0.83 0.495
Sybyl::D-Score 82 0.342 1.30 1.03 0.305 45 0.617 1.37 0.98 0.736 39 0.584 1.14 0.86 0.441
Sybyl::PMF-Score 82 0.246 1.34 1.09 0.226 37 0.513 1.02 0.86 0.523 39 0.655 1.07 0.80 0.652
Sybyl::G-Score 82 0.350 1.30 1.05 0.335 45 0.580 1.42 1.06 0.728 39 0.643 1.08 0.79 0.649
Sybyl::ChemScore 82 0.376 1.28 1.05 0.350 45 0.761 1.13 0.91 0.749 39 0.609 1.12 0.76 0.663
Sybyl::F-Score 80 0.361 1.31 1.08 0.375 45 0.663 1.31 1.05 0.610 35 0.371 1.15 0.87 0.145
Cerius2::LigScore 81 0.528 1.18 0.99 0.496 40 0.392 1.59 1.27 0.467 18 0.154 1.78 1.34-0.323
Cerius2::PLP1 82 0.458 1.23 1.02 0.395 45 0.729 1.19 0.88 0.785 39 0.718 0.98 0.76 0.606
Cerius2::PLP2 82 0.438 1.25 1.03 0.414 45 0.754 1.15 0.84 0.80239 0.735 0.96 0.67 0.781
Cerius2::PMF 82 0.411 1.26 1.03 0.342 43 0.775 1.06 0.85 0.740 39 0.604 1.12 0.87 0.603
Cerius2::LUDI1 82 0.208 1.35 1.11 0.123 45 0.670 1.29 1.01 0.698 38 0.065 1.21 0.86 0.335
Cerius2::LUDI2 82 0.274 1.33 1.11 0.181 45 0.696 1.25 0.95 0.725 39 0.470 1.25 0.89 0.519
Cerius2::LUDI3 82 0.248 1.34 1.10 0.174 45 0.679 1.28 1.00 0.690 39 0.433 1.27 0.91 0.554
GOLD::GoldScore 69 0.386 1.25 1.00 0.391 36 0.029 1.65 1.32-0.012 34 0.539 1.25 0.90 0.420
GOLD::GoldScore•opt 78 0.555 1.13 0.92 0.579 42 0.590 1.41 1.14 0.673 37 0.585 1.17 0.86 0.532
GOLD::ChemScore 78 0.404 1.19 0.98 0.386 44 0.388 1.61 1.33 0.348 39 0.498 1.22 0.89 0.307
GOLD::ChemScore•opt 80 0.429 1.24 1.02 0.393 44 0.520 1.49 1.21 0.565 39 0.639 1.08 0.80 0.454
HINT 82 0.313 1.32 1.04 0.264 45 0.135 1.73 1.37 0.251 39 0.599 1.13 0.78 0.689

a The best performing scoring function on each subset is in italics.b PDB entry 1ZSB was not included in evaluation for all of the scoring
functions in this test.
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including the four relatively successful scoring functions we
selected in the foregoing test, demonstrated poorer perfor-
mance on this subset than on the entire test set (see Table
6). The only exception was GOLD::GoldScore•Opt, which
produced the best results on this subset among all of the
scoring functions with a modest correlation coefficient of
0.555 and a standard deviation of 1.13 log units (Figure 2).
This is surprising at the first glance since the GoldScore does
not even have an explicit term for hydrophobic interaction,
which is believed to be one major element in the binding of
HIV-1 protease to its ligands. Nevertheless, as described in
the Supporting Information, GoldScore applies an empirical
weight factor of 1.375 to its van der Waals term to
compensate for the hydrophobic contacts between the protein
and the ligand.

The Trypsin Subset.There are 45 beta-trypsin (wide type
and mutants) complexes in our test set, making it the second
most populated protein class. The binding constants of these
complexes range from 1.49 to 8.28 with a mean value of
5.45 and a standard deviation of 1.74 (all in-logKd units).
In contrast to the disappointing performance observed for
the HIV-1 proteases, a number of scoring functions were
quite successful with this subset: X-Score, DrugScore,
Sybyl::ChemScore, Cerius2::PLP, and Cerius2::PMF all
produced correlation coefficients (Rp andRs) higher than 0.70
(see Table 6). X-Score::HMScore in particular yielded the
best performance on this subset among all the tested scoring
functions with a correlation coefficient of 0.823, a standard
deviation of 0.99, and an unsigned mean error of 0.75
(corresponding to∼1.0 kcal/mol in terms of binding free
energy). It is encouraging to observe such a good correlation
for a variety of chemical structures with binding constants
spanning nearly 7 orders of magnitude (Figure 3).

The Carbonic Anhydrase II Subset. Human carbonic
anhydrase type II (HCA II), with 40 complex structures in
total, is the third most populated protein class in our test
set. We decided to remove PDB entry 1ZSB from our
regression analyses because of its suspicious binding affinity.
Binding constants of the remaining 39 complexes range from
3.90 to 10.52 with a mean value of 8.50 and a standard
deviation of 1.41 (all in-logKd units). Note that this set of
complexes may be challenging for scoring functions since
(i) the average binding constant of this subset (8.50) is well
above that of the entire test set (6.46) and (ii) binding

constants of this subset have a narrow distribution as
indicated by the small standard deviation (1.41). Despite
these challenges, some scoring functions still produced
correlation coefficients (Rp andRs) higher than 0.6, including
Sybyl::PMF-Score, Sybyl::G-Score, Sybyl::ChemScore,
Cerius2::PLP, Cerius2::PMF, and HINT (see Table 6). These
scoring functions typically yielded a standard deviation
around 1.0 and an average error around 0.7. The best
correlation was given by Cerius2::PLP2, which had a
correlation coefficient of 0.735, a standard deviation of 0.96,
and an unsigned mean error of only 0.67 (<1.0 kcal/mol in
terms of binding free energy) for this subset (see Figure 4).

Our test has basically verified the expectation that scoring
functions tend to work better on a specific set of protein-
ligand complexes. For the trypsin subset and the HCA II
subset we have investigated, a number of scoring functions
produced quite satisfactory results. In some cases, such as
X-Score on the trypsin subset, the performance demonstrated
by a scoring function was quite impressive. Our results show
that today’s scoring functions are applicable to real structure-
based drug design projects, despite their unsatisfactory
performance on a nondiscriminative assembly of structurally
diverse protein-ligand complexes. Furthermore, our study
suggests that selecting the right scoring function through an
objective test in prior is very important to ensure a reasonably
successful prediction of the binding affinities for designed

Figure 2. Binding constants versus the binding scores computed
by GOLD::GoldScore•Opt for the HIV-1 protease subset (N )
82, Rp ) 0.555,SD ) 1.13,ME ) 0.92).

Figure 3. Binding constants versus the binding scores computed
by X-Score::HMScore for the trypsin subset (N ) 45,Rp ) 0.823,
SD ) 0.99,ME ) 0.75).

Figure 4. Binding constants versus the binding scores computed
by Cerius2::PLP2 for the carbonic anhydrase II subset (N ) 39,Rp
) 0.735,SD ) 0.96,ME ) 0.67).

H J. Chem. Inf. Comput. Sci. WANG ET AL.



ligands, since none of these 14 scoring function performs
consistently better than the others in our test.

Today’s Scoring Function: Pros and Cons.With the
development of more and more docking/scoring tools,
objective comparison of the performance of these tools has
become an important task. Our opinion is that, to make such
a comparison, it is more informative to dissect the compli-
cated docking/scoring procedure into some modular problems
and conduct the assessment accordingly. For example, in our
previous comparison of a number of scoring functions,31 we
focused on evaluating their abilities to identify the native
binding pose out of an ensemble of computer-generated
decoys. In this study, we focused on evaluating their abilities
to predict the binding affinity when the correct protein-
ligand complex structure is provided. Such information may
serve as a general guidance when one needs to make a choice
among several available scoring functions. Furthermore,
testing these scoring functions on a large variety of protein-
ligand complexes also helps us to achieve a better under-
standing of the strength and weakness of today’s scoring
functions. This also sheds light on the development of more
accurate scoring functions.

In this study, we have included 14 scoring functions that
are force-field-based, or PMF, or empirical in nature. A
number of relatively successful scoring functions, i.e.,
X-Score, DrugScore, Sybyl::ChemScore, and Cerius2::PLP,
reproduced the binding constants of the entire test set with
a standard deviation of 1.8-2.0 log units (corresponding to
2.5-2.7 kcal/mol in binding free energy at room tempera-
ture). When applied to some specific sets of complexes, they
were able to produce a standard deviation as low as 1.0 log
units (∼1.4 kcal/mol). It would be thus interesting to compare
the accuracy of these scoring functions with “first-principle”
based methods, such as free energy perturbation (FEP),41

linear interaction energy approximation (LIE),42,43 and
MM-PBSA/GBSA.44 However, to the best of our knowledge,
those “first-principle” based methods have not been tested
extensively. They were often applied to reproduce the binding
affinities of a small and well-selected set of ligand molecules
bound to a certain target protein. In such studies, the reported
accuracy typically ranged from 1-2 kcal/mol.41-44 Hence,
these relatively successfully scoring functions evaluated in
our current study and those “first-principle” based methods
appear to have a similar accuracy in protein-ligand binding
affinity prediction, but scoring functions only cost a small
fraction of the computation time needed by those “first-
principle” based methods.

Among these four relatively successful scoring functions,
there are either empirical in nature such as X-Score, Sybyl::
ChemScore, and Cerius2::PLP or knowledge-based PMF
methods such DrugScore. Thus, it appears that both strategies
are valid for developing scoring functions. The major
advantage of the scoring functions in these two categories
is that they can readily take advantage of the growing number
of protein-ligand complexes to derive better formulated
equations. Among these 14 scoring functions we have tested,
there are also force field based scoring functions, i.e., Sybyl::
D-Score, Sybyl::G-Score, and GOLD::GoldScore. Their
performance in our test was generally worse than empirical
scoring functions or knowledge-based PMF approaches.
However, we have not investigated how well a classical force
field can predict protein-ligand binding affinities if it is

combined with a solvation model. We noted with a great
interest that Ferrara et al. recently combined the CHARMm
force field with a variety of solvation models, including the
Poisson-Boltzmann model (PB), the generalized Born model
(GB), and distance-dependent or constant dielectric functions
for binding affinity prediction.32 To optimize the performance
of this approach, atomic partial charges and protonation states
were carefully assigned on both of the protein and the ligand
molecules. It was shown that this approach performs reason-
ably well in recognizing the native binding pose of decoys.
Furthermore, it was shown to have a similar performance as
the empirical ChemScore method in reproducing the experi-
mentally determined binding affinities of 189 protein-ligand
complexes.32 Hence, force field-based approaches, if com-
bined with appropriate solvent models, can also predict the
binding affinities of protein-ligand complexes with a similar
accuracy as current empirical and PMF-based scoring func-
tions.

Another interesting observation in our study is that,
regarding the binding scores they computed, today’s scoring
functions are actually quite similar to each other, even for
those that belong to different categories. In Table 7, we have
listed the correlations between the binding scores computed
by X-Score, DrugScore, Sybyl::ChemScore, and Cerius2::
PLP on the entire test set. Comparing the data in Tables 7
and 2, one can see that the intercorrelations between these
scoring functions (Rp ) 0.69-0.92) are in fact higher than
the correlations between their scores and experimental
binding constants (Rp ) 0.45-0.57). In particular, Drug-
Score::Pair and Cerius2::PLP2 showed a remarkable cor-
relation coefficient of 0.924. This observation is understand-
able since many scoring functions formulate their equations
in a similar way. The good correlations between these scoring
functions indicate that many of the current scoring functions
share their strengths as well as their weaknesses. As indicated
in Table 4, the most significant outliers identified in our test
were actually common to X-Score, DrugScore, Sybyl::
ChemScore, and Cerius2::PLP.

Given the fact that no scoring function performs consis-
tently better than the others, one would wonder if the
consensus scoring strategy would work better in our test. It
has been shown that this strategy can reduce the false
positives in virtual screening.45 In our previous study,31 we
also observed that a combination of two or more scoring
functions could lead to a better chance of identifying the
native pose out of an ensemble of decoys. In our current
study, we have tested all of the possible combinations of
any two of the four relatively successful scoring functions
on the entire test set. The results of all consensus scoring
schemes we tested are summarized in Table 8. Note that since
most scoring functions give binding scores in arbitrary units,
caution must be taken when combining the results produced
by two different scoring functions. In our consensus scoring
experiments, the relative rank of each protein-ligand

Table 7. Correlations between the Binding Scores Computed by
Four Scoring Functions for the Entire Test Set

correlation coefficients
(Rp) N ) 800

DrugScore::
Pair

Sybyl::
ChemScore

Cerius2::
PLP2

X-Score::HMScore 0.737 0.751 0.691
DrugScore::Pair 0.742 0.924
Sybyl::ChemScore 0.717
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complex was used instead of its absolute binding score in
correlation analysis, i.e., the final score of a complex
computed by a consensus scoring scheme was the mean value
of the ranks given by each component scoring function. Such
scores were then correlated with the experimentally deter-
mined binding constants.

As shown in Table 8, once again we observed that double
scoring schemes produced marginally but consistently better
results than individual scoring functions. On the other hand,
it is also clear that the accuracy level a consensus scoring
scheme can reach is basically limited by the accuracy level
of its component scoring functions. As we have attempted
to demonstrate in a previous study,46 consensus scoring only
provides statistical advantages because of its multiple
sampling nature. This is especially true when the component
scoring functions in a consensus scoring scheme have fairly
high intercorrelations between each other.

Today’s scoring functions, even those relatively successful
ones, have their significant drawbacks. One significant
drawback we have noticed is that today’s scoring functions
are less capable of handling those complexes with either very
low or very high affinities. This is clearly indicated in Table
3 and can also be seen in Figure 1. For example, X-Score::
HMScore, the one showing the best statistics on the entire
test set, systematically overscored the protein-ligand com-
plexes with very low affinities (-logKd < 3) and underscored
many protein-ligand complexes with very high affinities
(-logKd > 10). We believe that this is caused in part by a
lack of enough penalty terms in X-Score. In fact, the only
penalty term in X-Score is a count of rotatable single bonds
on the ligand molecule, while all of the other terms sum up
favorable contributions from van der Waals inter-
action, hydrogen bonding, and hydrophobic effect (see the
Supporting Information). Other scoring functions also share
this drawback. Another possible reason is embedded in the
way how a scoring function is developed. The quality of a
scoring function is inevitably influenced by the contents of
its training set. Considering that the training sets used for
calibrating empirical scoring functions were primarily formed
by protein-ligand complexes with medium-level binding
affinities (which is also true for the test set we used in this
study), it is not surprising that those scoring functions cannot
handle the complexes with extremely low or extremely high
binding affinities very well.

Another major drawback we know about today’s scoring
functions is that they do not have adequate coverage for some

less frequently occurring factors in protein-ligand binding.
Today’s empirical scoring functions normally only consist
of terms for computing some common types of interactions
upon protein-ligand binding, such as van der Waals disper-
sion/repulsion, hydrogen bonding, and hydrophobic inter-
actions. Knowledge-based PMF approaches do not use
explicit terms, but they include such consideration implicitly
with their atom typing schemes. Such a scoring function may
be sufficient for handling “normal” protein-ligand com-
plexes, such as those protein-ligand complexes in the subsets
of trypsin and carbonic anhydrase II. However, if some
unusual factors play an important role in the protein-ligand
binding process, such a scoring function may fail. For
example, we observed cation-π interactions in a number of
HIV-1 protease complexes such as 1HVI, 1HVJ, 1HVK, and
1HVS. No scoring function in our test contemplates this type
of interactions, although they are recognized as strong
interactions in molecular recognition. There are also other
factors that may be difficult to implement in a scoring
function, such as the cooperative conformational rearrange-
ment upon protein-ligand binding.

CONCLUSION

Fourteen popular scoring functions have been tested on a
set of 800 protein-ligand complexes with high-resolution
structures and experimentally determined binding affinities.
Overall, only moderate correlations were found between the
computed scores and the experimentally determined binding
affinities of these protein-ligand complexes. Among them,
X-Score, DrugScore, Sybyl::ChemScore, and Cerius2::PLP
were found to produce better correlations between their
scores and the experimentally determined binding constants
than the other scoring functions. Notably, these four scoring
functions were also robust enough to conduct their computa-
tion on the input crystal structures without any structural
optimization.

Reevaluation of these 14 scoring functions on three subsets
of protein-ligand complexes, i.e., HIV-1 protease com-
plexes, trypsin complexes, and carbonic anhydrase II com-
plexes, demonstrated that for the trypsin and carbonic
anhydrase II subsets, the best current scoring functions were
able to produce a standard deviation as low as 1.0 log units
(∼1.4 kcal/mol). Compared to the performance observed for
the entire test set, we concluded that a scoring function may
perform significantly better in the prediction of the binding
affinities of ligand molecules bound to the same protein. Our
test also showed that a scoring function’s performance on a
particular target protein is largely case-dependent. Therefore,
in a practical structure-based drug design project, an objective
evaluation of available scoring functions on the target protein
of interest is still necessary in order to choose the most
suitable scoring function for the project.

It is encouraging to observe that today’s scoring functions
are applicable to a wide range of protein-ligand systems,
and in some cases they are even very successful. However,
it is also clear that scoring functions, both empirical scoring
functions and PMF-based approaches, still need to be
improved significantly toward the ultimate goal to reliably
predict the binding affinity of a protein-ligand complex even
if an experimental structure is available.

Table 8. Consensus Scoring Schemes Tested on the Entire Test Set

scoring method

Pearson
correlation
coefficient

(Rp)

Spearman
correlation
coefficient

(Rs)

Single Scoring Function
X-Score::HMScore 0.566 0.603
DrugScore::Pair 0.473 0.484
Sybyl::ChemScore 0.499 0.507
Cerius2::PLP2 0.455 0.478

Double Scoring Schemes
X-Score::HMScore+ DrugScore::Pair 0.573 0.586
X-Score::HMScore+ Sybyl::ChemScore 0.586 0.597
X-Score::HMScore+ Cerius2::PLP2 0.573 0.586
DrugScore::Pair+ Sybyl::ChemScore 0.520 0.529
DrugScore::Pair+ Cerius2::PLP2 0.476 0.488
Sybyl::ChemScore+ Cerius2::PLP2 0.521 0.530
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(2) Böhm, H. J. The development of a simple empirical scoring function
to estimate the binding constant for a protein-ligand complex of
known three-dimensional structure.J. Comput.-Aided Mol. Des.1994,
8, 243-256.

(3) Jain, A. N. Scoring noncovalent protein-ligand interactions: A
continuous differentiable function tuned to compute binding affinities.
J. Comput.-Aided Mol. Des.1996, 10, 427-440.

(4) Head, R. D.; Smythe, M. L.; Oprea, T. I.; Waller, C. L.; Green, S.
M.; Marshall, G. R. VALIDATE: A new method for the receptor-
based prediction of binding affinities of novel ligandsJ. Am. Chem.
Soc.1996, 118, 3959-3969.

(5) Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee,
R. P. Empirical scoring functions: I. The development of a fast
empirical scoring function to estimate the binding affinity of ligands
in receptor complexes.J. Comput.-Aided Mol. Des.1997, 11, 425-
445.

(6) Murray, C. W.; Auton, T. R.; Eldridge, M. D. Empirical scoring
functions. II. The testing of an empirical scoring function for the
prediction of ligand-receptor binding affinities and the use of Bayesian
regression to improve the quality of the model.J. Comput.-Aided Mol.
Des.1998, 12, 503-519.
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