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An assessment of nine scoring functions commonly applied in docking using a set of 189 protein-
ligand complexes is presented. The scoring functions include the CHARMm potential, the scoring
function DrugScore, the scoring function used in AutoDock, the three scoring functions
implemented in DOCK, as well as three scoring functions implemented in the CScore module
in SYBYL (PMF, Gold, ChemScore). We evaluated the abilities of these scoring functions to
recognize near-native configurations among a set of decoys and to rank binding affinities.
Binding site decoys were generated by molecular dynamics with restraints. To investigate
whether the scoring functions can also be applied for binding site detection, decoys on the
protein surface were generated. The influence of the assignment of protonation states was
probed by either assigning “standard” protonation states to binding site residues or adjusting
protonation states according to experimental evidence. The role of solvation models in
conjunction with CHARMm was explored in detail. These include a distance-dependent dielectric
function, a generalized Born model, and the Poisson equation. We evaluated the effect of using
a rigid receptor on the outcome of docking by generating all-pairs decoys (“cross-decoys”) for
six trypsin and seven HIV-1 protease complexes. The scoring functions perform well to
discriminate near-native from misdocked conformations, with CHARMm, DOCK-energy,
DrugScore, ChemScore, and AutoDock yielding recognition rates of around 80%. Significant
degradation in performance is observed in going from decoy to cross-decoy recognition for
CHARMm in the case of HIV-1 protease, whereas DrugScore and ChemScore, as well as
CHARMm in the case of trypsin, show only small deterioration. In contrast, the prediction of
binding affinities remains problematic for all of the scoring functions. ChemScore gives the
highest correlation value with R2 ) 0.51 for the set of 189 complexes and R2 ) 0.43 for the set
of 116 complexes that does not contain any of the complexes used to calibrate this scoring
function. Neither a more accurate treatment of solvation nor a more sophisticated charge model
for zinc improves the quality of the results. Improved modeling of the protonation states,
however, leads to a better prediction of binding affinities in the case of the generalized Born
and the Poisson continuum models used in conjunction with the CHARMm force field.

1. Introduction

Molecular recognition is a problem of fundamental
importance in biology. An understanding of its prin-
ciples would result in a more efficient application of
medicinal chemistry. In particular, it is important for
drug discovery to capture the physical principles re-
sponsible for the recognition of a drug by its protein
target. The ever growing amount of structural informa-
tion makes computer-aided structure-based ligand de-
sign methods a useful alternative strategy to experi-
mental high-throughput screening to find novel leads
in a drug development program.1

Computer-aided structure-based methods are aimed
at predicting the binding mode of a ligand in the binding
site of a protein or any molecular target and at obtaining
an estimate of the binding affinity. These methods
involve two computational steps: docking and scoring.

In the docking step, multiple protein-ligand configura-
tions, called poses, are generated. Several current dock-
ing programs have the ability to generate poses close
to the native structure (usually an rmsd of e2 Å is
accepted as close) in many cases.2-7 Then, a scoring
function is used to calculate the affinity between the
receptor and the ligand for each pose. There are several
requirements a useful scoring function should satisfy.
First, the poses must be ranked correctly; i.e., those that
resemble most closely the experimental structures
should score best. In addition, if multiple ligands are
docked, their binding free energies need to be ranked
accurately. In a virtual screening simulation, weak
binders should be distinguished from nonbinders. Fi-
nally, a scoring function must be sufficiently fast to be
applied in a docking algorithm. This makes it almost
impossible to use methods that require the generation
of a correctly weighted ensemble of conformations to
obtain the free energy of binding, although calculations
of binding affinities based on algorithms that identify
the most stable conformations of the free and bound
species have been reported.8,9 These studies highlight
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the important role of the configurational entropy, which
is not explicitly taken into account in calculations using
the single-structure approach.

Scoring functions can be grouped into three classes:
force-field-based, knowledge-based, and empirical scor-
ing functions (see refs 10 and 11 for a review). Force-
field-based scoring functions apply classical molecular
mechanics energy functions. They approximate the
binding free energy of protein-ligand complexes by a
sum of van der Waals and electrostatic interactions.
Solvation is usually taken into account using a distance-
dependent dielectric function, although solvent models
based on continuum electrostatics have been devel-
oped.12,13 Nonpolar contributions are usually assumed
to be proportional to the solvent-accessible surface area.
A drawback is that the energy landscapes associated
with force-field potentials are usually rugged, and
therefore, minimization is required prior to any energy
evaluation.

Empirical scoring functions estimate the binding free
energy by summing interaction terms derived from
weighted structural parameters. The weights are ob-
tained by fitting the scoring function to experimental
binding constants of a training set of protein-ligand
complexes. The archetypical scoring function pioneered
by Böhm consists of five contributions, which represent
hydrogen bonds, ionic and lipophilic interactions, and
the loss of external and configurational entropy upon
binding.14,15 The main drawback of empirical scoring
functions is that it is unclear whether they are able to
predict the binding affinity of ligands structurally
different from those used in the training set.

Knowledge-based scoring functions represent the
binding affinity as a sum of protein-ligand atom pair
interactions. These potentials are derived from the
protein-ligand complexes with known structures, where
probability distributions of interatomic distances are
converted into distance-dependent interaction free ener-
gies of protein-ligand atom pairs using the “inverse”
Boltzmann law.16 However, the structures deposited in
the Protein Data Bank (PDB) do not provide a thermo-
dynamic ensemble at equilibrium, and therefore, a
knowledge-based potential should be considered as a
statistical preference rather than a potential of mean
force. A key ingredient of a knowledge-based potential
is the reference state, which determines the weights
between the various probability distributions. Recently,
several approaches to derive these potentials have been
proposed.17-20 They differ in their definition of the
reference state, the protein and ligand atom types, and
the list of protein-ligand complexes from which they
were extracted.

No scoring function performs in a satisfactory way,
which led to a pragmatic compromise, the so-called
consensus scoring approach. Here, several scoring func-
tions are combined and only those poses that receive
high scores by two or more scoring functions are
considered favorable.21 It was shown that this method
yields a large reduction of false positives when applied
either to choosing the ligands with the lowest binding
free energies among a set of ligands or to selecting the
best poses between different docked configurations of a
particular ligand.

Here, we present an assessment of nine scoring
functions, most of which are implemented in widely used
docking programs. The scoring functions cover the three
classes described above: CHARMm22 and DOCK-
chemical5 represent force-field-based methods; Chem-
Score23 and the potentials implemented in GOLD3,24 and
AutoDock6,25,26 are empirical scoring functions; Drug-
Score20 and PMF19 are knowledge-based potentials.
Finally, DOCK-contact counts the number of contacts
between the ligand and the receptor. The study was
performed on data from the Ligand-Protein Database
(LPDB), which is World Wide Web accessible (http://
lpdb.scripps.edu) and comprises 189 protein-ligand
complexes.27 This data set corresponds to 49 different
receptors with both high-resolution structure (2.1 Å on
average) and known experimental binding affinity. In
this respect, the current study is the most comprehen-
sive comparison of scoring functions reported so far.

Several studies analyzing the performance of docking
programs in combination with various scoring functions
have been reported in the case of virtual screening
applications.21,28,29 In such a study, the foremost goal
is to identify true hits in a database of mainly nonbind-
ers. This point is not addressed in this study, but we
were interested in correctly ranking ligands already
known to bind, which is of primary interest in lead
optimization. In addition, to separate the docking
problem from the scoring problem, nearly 100 decoys
have been constructed for each protein-ligand pair
whose deviations from the crystal structure represent
a continuous spectrum in the neighborhood of the
binding site. This set was then rescored by all functions.
Finally, misdocked structures far from the binding site
were generated to test whether the scoring functions
can successfully detect binding pockets.27 The present
study was motivated by earlier work by Vieth et al. to
identify key features of binding energy landscapes
necessary and sufficient for the development of success-
ful docking and scoring algorithms.30,31 We note that a
study similar in spirit has been reported very recently
by Wang et al. on a data set of 100 complexes, which
assesses 11 scoring functions in their ability to recognize
native poses among a set of decoys and to predict
binding affinities.32 The next paragraphs explain to
which extent our study goes beyond theirs.

The experimental conditions, such as pH or salt
concentration, under which crystallization and the
binding assay are performed and the packing in the
crystal form can have a profound impact on the binding
mode and the affinity of the ligand. This has been
recently revealed in a study of trypsin crystals,33 which
shows the occurrence of protonation and crystal form
dependent binding modes. For a series of aliphatic cyclic
ureas bound to HIV-1 protease, the binding energies
computed by the Poisson equation significantly depend
on the protonation state of the two active site aspartic
acids.9 Therefore, it may be anticipated that it is
important to correctly model the protonation state of
the ligand and the receptor, at least for the scoring
functions that make use of partial charges. It is worth
noting that the pH of crystallization of the complexes
deposited in the LPDB is as low as 3.0 and as high as
8.5. We investigated this issue by adjusting, for some
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of the complexes, the protonation state according to
experimental evidence when available.

Solvation plays an important role in molecular rec-
ognition, and accurately incorporating solvent effects in
docking approaches represents a major challenge. Sol-
vation models based on continuum electrostatics have
been implemented in docking13,34 and de novo ligand
design programs.12 In a virtual screening simulation
against three receptors, it was shown that including
ligand solvation improves the ranking of known ligands
and leads to low-energy compounds with net formal
charges consistent with those of known ligands.34 Hence,
in this study, we analyzed in depth the role of electro-
statics in scoring by using various solvent models in
conjunction with the CHARMm force field.

Zinc in the binding sites of metalloproteins performs
essential biological functions and often contributes
considerably to the binding affinity of small-molecule
ligands. However, it is notoriously difficult to evaluate
metal-ligand interactions. More specifically, different
charge sets may significantly influence binding energies
computed by force-field scoring functions. Recently, it
has been shown that the use of partial atomic charges
determined by semiempirical calculations leads to a
better recognition of true ligands in database docking.35

Thus, we investigated the influence of the zinc charge
model by comparing scoring results obtained for two sets
of charges. First, zinc is modeled as a +2 ion; second,
the charge transfer between the zinc and its coordinat-
ing protein groups is taken into account, leading to a
Zn charge below +2 (see section 2).

It is obvious that docking algorithms that treat the
receptor as rigid will encounter problems in docking a
ligand into a binding site if the latter undergoes a
significant conformational change upon binding. It is
unclear to what extent small changes in the receptor
compromise the accuracy of the scoring functions. From
the point of view of virtual screening applications, it is
common practice to preferentially use coordinates of a
receptor obtained with a ligand analogue. Studies that
assess the performance of scoring functions for cross-
docking are rare. Murray et al. carried out docking and
cross-docking experiments for three fairly rigid enzymes
(thrombin, thermolysin, and neuraminidase) using the
program PRO_LEADS, which makes use of the scoring
function ChemScore.36 Docking and cross-docking simu-
lations were also performed for a set of 34 protein-
ligand complexes, which represents 17 pairs of com-
plexes of the same protein bound to two different

ligands.37 Binding energies were computed by the
DOCK energy potential and PMF. In both studies, the
decrease in performance was significant. We investi-
gated the influence of the receptor structure by generat-
ing cross-decoys for six trypsin and seven HIV-1 pro-
tease complexes. We selected these two enzymes because
their receptors display a significantly different plastic-
ity. In the former case, the receptor is fairly rigid,
whereas it is more flexible in the latter.

2. Methods

In this section, we provide details of data preparation
and briefly outline the scoring functions used in this
study.

2.1. Data Preparation. A detailed description of the
selection and preparation of complexes in the LPDB is
given in ref 27. We focus on the modifications since the
first release of the database. To date, the LPDB com-
prises 189 complexes, which correspond to 49 different
receptors and cover a range of binding affinities of 12
orders of magnitude (Table 1).

Recently, the importance of using error-free experi-
mentally determined structural data for the develop-
ment and evaluation of scoring functions has been
noted.38,39 In our case, using minimized crystal geom-
etries alleviates the problem of short-range interactions
sometimes found in the crystal. Furthermore, a survey
of our data reveals that in around 15% of the cases,
crystal contacts are found to the ligand. To investigate
the influence of crystal contacts on the outcome of the
prediction of binding affinities, we also used decoys for
affinity prediction in addition to the minimized crystal
structure. However, we did not find any significant
change in the results. In the case of identification of
near-native poses, some of the crystal geometries may
not be relevant as references due to the presence of
crystallographically related contacts. This point is not
addressed in this study.

2.1.1. Protonation State Assignment. A first set
of structures was generated by using default values to
determine the protonation states of the titratable groups.
As such, amines were protonated, carboxylate groups
were negatively charged, and hydroxyl groups are
considered to be neutral. Imidazole rings were consid-
ered neutral, with the hydrogen on the δ nitrogen,
except when a hydrogen bond involving the Nε as a
donor could be formed. Then, the hydrogen was placed
on the ε nitrogen.

Table 1. Description of the Data Sets

no. data set no. of complexes pKi range R2 a protonation states zinc charge model

1a all 189 12 0.36 modified ab initio
1b all 189 12 0.36 standard ab initio
2 all/ChemScore + AutoDock 116 11 0.35 modified ab initio
3 aspartic protease 52 7 0.05 modified NA
4 oxidoreductase 37 8 0.23 modified ab initio
5 serine protease 25 7 0.81 NA NA
6 metalloprotease 13 10 0.58 modified ab initio
7 immunoglobulin 10 6 0.50 modified NA
8 lyase 10 (8b) 8 (3b) 0.18 NA ab initio
9 L-arabinose binding protein 9 2 0.16 NA NA
10 mhc 7 2 0.01 NA NA
11 others 26 11 0.09 modified ab initio
a Square of the correlation coefficient (R2) between the experimental binding affinities and the logarithm of the ligand molecular weights.

R2 values in italic denote an anticorrelation. b Without 1avn and 1ebg.
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As mentioned, the ligand binding mode and the
binding affinity can be strongly pH-dependent, which
led us to build a second set of conformations by adjusting
the protonation states of ligands and protein residues
according to either experimental evidence or chemical
intuition. This information (when available) was ex-
tracted from the literature describing the crystallization
of the complex structure. For example, it was suggested
that most of the ligands in the LPDB that are bound to
cytochrome c peroxidase should be protonated.40 It is
worth noting that the pH of crystallization for this series
of ligands is close to 4.5. In some of the thermolysin
complexes, a contact between the ligand and the recep-
tor involves two carboxylate oxygens separated by a
distance of around 2.8 Å. In this case, a hydrogen atom
was placed on the oxygen belonging to the receptor. In
the case of the aspartic protease family, experimental
and theoretical studies show that there is not a con-
sensus choice for the protonation state of the two
catalytic aspartic acids in the binding site.41-49 Even
when it is assumed that the catalytic aspartates are in
a monoprotonated form, the position of the proton
remains unclear. An influence of the chemical nature
of the inhibitor and the pH of the experiment on the
ionization state of the active site has been described.50

Since the pH of crystallization of most of the aspartic
protease complexes in the LPDB ranges between 4.5 and
5.5, the two catalytic aspartates are probably not in the
form prevalent at physiological pH. In two cases (1hpx
and 1hbv), the proton was placed on the outer oxygen
of Asp25A, according to experimental evidence.51,52 For
the remaining aspartic protease complexes, we made the
somewhat arbitrary choice to place a proton on one of
the two inner oxygens of the carboxylate groups of the
two aspartic acids.

2.1.2. Metal-Ligand Interactions. Modeling inter-
actions between zinc and surrounding residues as solely
ionic leads to assigning a +2 charge for Zn. However,
charge transfer between zinc and its coordinating
protein residues reduces the zinc charge, which may
influence the outcome of binding affinity calculations.
To investigate this influence, the charge on the zinc and
neighboring protein atoms was computed by Hartree-
Fock calculations at the HF/6-31G*//HF/6-31G* level
using Gaussian.53 The following coordinated groups
were included in the calculations: for a histidine, all
atoms until the Cγ; for a cysteine until the Câ; for an
aspartate until the Câ; for a glutamate until the Cγ.
Ligand atoms were not taken into account in the
calculations. The bond between the zinc and its coordi-
nated atoms was considered to be covalent. Therefore,
for the complexes having a zinc bound to the ligand, only
those decoys were used for which the distance between
the zinc and its closest ligand atom was less than the
corresponding average distance extracted from the
Cambridge Structural Database augmented by 0.25 Å.54

2.1.3. Decoy Generation. After these changes, the
crystal structures were reminimized, and for each
minimized protein-ligand pair, two sets of decoys have
been generated.27 First, starting from the minimized
crystal structure, we used the replica method in
CHARMM to move simultaneously 25 copies of the
ligand within the rigid binding site. One-thousand steps
of Langevin molecular dynamics simulations at 300 K

with NOE-like restraints pulled the ligand away from
the minimized complex. These restraints are similar to
the distance restraints built from NOE data and used
in protein determination by NMR. The center of mass
of the ligand was not restricted. At the end of each move,
the 25 ligand positions were minimized using the
steepest descent method until the energy gradient was
less than 0.05 kcal mol-1 Å-1 (with a maximum number
of steps set to 1000), followed by conjugate gradient
minimization with the same termination criterion. We
will refer to these decoys as “binding site decoys”, since
they represent a quasi-continuum of decoys within the
binding site. Nearly 100 binding site decoys were
generated for each protein-ligand complex. It should
be noted that the binding modes of the decoys might
not be as diverse as in a docking simulation with
different random initial conformations. The distribution
of the root-mean-square deviation from the crystal
structure (rmsdN) of the binding site decoys is shown
in Figure 1 with the corresponding cumulative prob-
ability distribution. It can be seen that nearly half of
the binding site decoys have an rmsdN below 3.5 Å. In
the generation of the second decoy set, a spherical grid
comprising 1820 points was built around the protein.
All points overlapping with the protein were removed.
The ligand was translated to each point of the grid. For
each translation, 3-15 conformations were generated
from a random rotation of the ligand. The ligands were
minimized in the same way as the binding site decoys.
These decoys will be referred to hereafter as “surface
decoys”.

Minimization of the decoys with the CHARMm force
field may introduce a bias, which could favor the
CHARMm scoring function. To investigate this effect,
we reminimized all the decoy configurations with the
Tripos force field of the CScore module in SYBYL and
rescored them by all scoring functions. We did not find
any significant change in the recognition rates of near-
native configurations.

2.1.4. Cross-Decoy Generation. From the LPDB,
we selected six trypsin (1tni, 1tng, 1tpp, 1ppc, 1pph, and
3ptb) and seven HIV-1 protease (1ajv, 1gno, 1hih, 1hps,
1htf, 1hvi, and 2upj) complexes and generated cross-
decoys for all the protein-ligand pairs within a par-
ticular enzyme. To generate a “native” conformation for
a particular protein-ligand pair, the two binding sites

Figure 1. Histogram of the root-mean-square deviation from
the crystal structure of the binding site decoys (left y-axis) with
the corresponding cumulative probability distribution (right
y-axis).
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were first superimposed and the ligand was then
minimized in the rigid binding site of the related protein
using the conjugate gradient method until the energy
gradient was less than 0.5 kcal mol-1 Å-1 (with a
maximum number of steps set to 1000). Binding site
decoys were generated as described above for the
natural ligands, and no surface decoys were constructed.
In total, cross-decoys corresponding to 72 protein-
ligand combinations were generated.

2.2. Scoring Functions. An all-atom model was used
for CHARMm, DOCK, and AutoDock. Partial charges
for the protein were set up using the CHARMm force
field.22 A modified version of INSIGHT II55 was used to
assign the ligand partial charges, which makes use of
a bond increment scheme. Some of the bond increments
were modified to better reproduce the 6-31G* ESP
charges (the modified bond increments are available
upon request). CHARMm was evaluated either in vacuo
or in conjunction with various solvation models: namely,
the Poisson equation,56 the generalized Born (GB)
model,57 and either a constant (CDIE) or distance-
dependent dielectric function (RDIE). Implicit electro-
static solvation models approximate the energy associ-
ated with solvating a charged solute, represented by a
low-dielectric medium, in a solvent modeled by a high-
dielectric medium. Calculations based on the Poisson
equation are usually considered to be the benchmark
for continuum electrostatics. They were carried out
using the CHARMM58 PBEQ module, which makes use
of grid-based finite difference techniques (we will sub-
sequently refer to them as FDP). The grid spacing was
set to either 0.25 Å (FDP0.25) or 0.4 Å (FDP0.4), the ionic
strength was set to zero, and the solute dielectric
boundary was defined as the Lee-Richards molecular
surface.59 The solvent and solute dielectric constants
were set to 80 and either 1 or 4, respectively. A simpler
and faster continuum dielectric approximation is the so-
called generalized Born (GB) model, which approxi-
mates the reaction field by a Coulomb potential.57

Numerical and analytical solutions to the GB model
have been proposed.60-62 Here, we used a recently
developed analytical GB model in which a correction
term to the Coulomb field approximation has been
introduced in conjunction with a more accurate descrip-
tion of the molecular surface.63,64 The model contains
five parameters and utilizes a molecular volume built
from a superposition of atomic functions. The calcula-
tions were performed for ε ) 1, and the solvation
energies were scaled by (ε - 1/80)/(1 - 1/80) to obtain the
energies for higher values of the dielectric constant. An
even more simplified solvent model is based on a linear
distance-dependent dielectric function (called hereafter
RDIE, ε(r) ) cr, where c is a constant that can range
from 1 to 80 and r is an atom-atom distance) to
approximate the screening effects of the electrostatic
interactions. For the CDIE/RDIE calculations, a sig-
moidal switching function58 between 11 and 14 Å was
employed for both the van der Waals and electrostatic
terms. For the GB calculations, the van der Waals and
the electrostatic interactions were truncated between
24 and 26 Å with a switching function.

Three scoring functions, called contact, energy, and
chemical scoring, are available in the DOCK 4.0.1
program suite.5 The contact scoring function counts the

number of heavy atom contacts between the ligand and
the receptor. The energy score is based on the non-
bonded interaction energies of the Weiner et al. force
field.65 AMBER charges were used for the protein, while
Gasteiger-Marsili66 atomic charges as implemented in
SYBYL67 were assigned to the ligands. A linear distance-
dependent dielectric function (ε(r) ) 4r) was used for
the Coulomb potential, and the cutoff for steric and
electrostatic interactions was set to 10 Å. The chemical
score is based on the energy score except that the
attractive part of the van der Waals interaction is scaled
depending on the interacting atoms. The gridded_score
flag was turned off in DOCK to enable scoring as a
continuous function.

DrugScore20 and AutoDock6,25,26 were evaluated by
using their original implementation. The CScore (Con-
sensus Score) module68 implemented in SYBYL67 was
used to assess ChemScore,23 Gold,3,24 and PMF.19 It
should be noted that the scores calculated by the
original scoring function and CScore can differ.28 Drug-
Score and PMF are knowledge-based potentials, which
were derived by using 1376 and 697 protein-ligand
complexes, respectively, taken from the PDB. In Drug-
Score, 17 atom types were defined, whereas PMF is
based on 16 protein atom types and 34 ligand atom
types. A knowledge-based, solvent accessible surface
area dependent solvation term is included in DrugScore.
The GOLD scoring function is a sum of a hydrogen-
bonding energy, a steric interaction energy (a 4-8
potential) between the ligand and the protein, and an
internal energy for the ligand, which consists of a van
der Waals energy and a torsional potential.3,24 Chem-
Score is a regression-based scoring function, which uses
contact terms for lipophilic and metal-binding contribu-
tions and a hydrogen-bonding term. ChemScore also
includes a term that penalizes restriction of conforma-
tional degrees of freedom upon binding.23 ChemScore
was calibrated on a data set of 82 protein-ligand
complexes. AutoDock (version 3.0) is also a regression-
based scoring function, which consists of a van der
Waals, an electrostatic, a hydrogen bonding, and a
desolvation energy term, augmented by an entropic
term that measures the loss of torsional degrees of
freedom upon binding. The desolvation free energy is
taken to be proportional to the volume around the atoms
that are exposed to the solvent.69 The scoring function
was parametrized on a set of 30 protein-ligand com-
plexes.6 To evaluate the influence of the charge set,
AMBER/Gasteiger-Marsili and CHARMm/INSIGHT II
charges were assigned to the complexes, and only the
results obtained by the AMBER/Gasteiger-Marsili
charges will be discussed, since both alternatives yield
very similar results.

Finally, we note that the binding energies ∆E were
calculated according to ∆E ) Ecomplex - Eprotein - Eligand
and, therefore, include only interaction energies be-
tween the ligand and the protein. For the CHARMm
force field, taking into account the intraligand energy
leads to a small improvement in the recognition of near-
native configurations and to similar correlation coef-
ficients with the experimentally determined binding
affinities (data not shown).

2.3. Data Analysis. The performance of the scoring
functions is evaluated in terms of their ability (a) to
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identify near-native ligand poses (e2 Å) among a set of
decoy structures and (b) to correctly rank different
ligands with respect to their binding affinities. The
latter ability depends on the former because it cannot
be expected that correct binding affinities are obtained
using misdocked protein-ligand configurations as the
structural basis.30 We did not investigate how often the
minimized crystallographic structure scores best be-
cause it does not always represent the global energy
minimum and is seldom generated by docking tools.
Instead, we used the percentage of complexes with a
root-mean-square deviation from the crystal structure
of less than 2 Å of the best ranked structure as the
criterion to evaluate the success of a potential to
recognize near-native binding modes.

Progress in understanding ligand-protein interac-
tions has been made by using ideas of the statistical
energy landscape theory.30,70,71 It has been suggested
that the ruggedness of the binding energy surface can
be associated with structural flexibility and different
types of binding mechanisms.7,70 This finding led us to
assess the discriminative power of a particular scoring
function, which measures its ability to discriminate
between well-docked structures and misdocked struc-
tures. To do so, we used a criterion that has been defined
previously in a study of the CHARMm force field as a
scoring function for flexible docking.30 It is based on the
Z score, which is defined as

where E represents the binding energy of the ligand-
receptor complex, Eh is the mean energy, and σ is the
standard deviation of the energy distribution. In this
work, this energy distribution corresponds either to the
binding energies of the well-docked conformations or to
those of the misdocked conformations (see below). The
discriminative power, DP, of a given scoring function is
then defined as

where i refers to the different complexes and N is the
number of complexes. Zmin

i,D and Zmin
i,M represent the Z

scores for the lowest energy structure among the well-
docked and misdocked conformations, respectively. fi is
the fraction of the well-docked structures with Z scores
lower than those of the misdocked structures. The
definition of well-docked and misdocked was taken as
before,30 i.e., the structures with a rmsdN smaller than
2 Å and larger than 4 Å, respectively. A DP value of
zero means no discriminative power, and the lower the
value of DP, the more reliable is the energy function in
finding relevant solutions.

Finally, we used the square of the Pearson correlation
coefficient (R2) to evaluate the ability of a particular
scoring function to predict experimental binding affini-
ties. For instance, an R2 of 0.36 between the experi-
mental binding affinities and the molecular weight of
the ligands means that 36% of the variation in the
logarithm of the binding potency can be explained by a
variation in the molecular weight. To relate the scores

calculated by a knowledge-based or a force-field-based
scoring function to an absolute binding affinity, it would
be necessary to scale all computed energies. This was
not done in this study, and therefore, we do not provide
the standard deviations from the observed affinities.

2.4. Description of the Data Sets. Table 1 lists the
data sets that were used to analyze the scoring func-
tions. The first two sets (1a, 1b) each comprise the whole
database (189 complexes). However, they differ in the
protonation state assigned to the ionizable groups. Most
of the complexes used to calibrate ChemScore and
AutoDock belong to the LPDB. Therefore, to better
evaluate the predictability of these two regression-based
scoring functions, we built set 2, where 69 complexes
that belong to the training set of ChemScore and
AutoDock were removed. In a drug design project, one
is interested in either the relative binding free energy
between two different ligands for the same receptor
(affinity) or the relative binding free energy between two
different receptors for the same ligand (specificity).
Therefore, we also considered sets 3-11, where all 189
complexes were classified according to their receptor.

3. Results and Discussion

3.1. Comparison of the Generalized Born Model
with a Model Based on the Poisson Equation.
Recently, a new solution for the GB model has been
described.63,64 Yet the model has only been validated for
different protein conformations and not for protein-
ligand complexes. Since the solvation contribution to the
binding free energy (which is on the order of 10-100
kcal mol-1) is determined as the difference between
solvation free energies of the complex, the receptor, and
the ligand (the first two usually being on the order of
103-104 kcal mol-1), already small absolute errors in
these solvation free energies lead to a large (relative)
error in the predicted binding free energy. Furthermore,
it has been questioned whether continuum solvent
models parametrized to reproduce vacuum-to-water free
energy data can be used for binding reactions without
reparametrization.72 Here, we present an extensive
validation of this model based on a comparison with
FDP results. The benchmark FDP solvation energies
were obtained using a grid spacing of 0.25 Å. These
calculations are computationally intensive, and there-
fore, we tested the accuracy of the GB method on a set
of only 84 complexes. Table 2 shows that the GB
energies for the complex, receptor, and ligand agree very
well with the FDP0.25 energies with an average absolute
error below 1% for the complex and receptor. The
agreement is almost as good as between the FDP0.25 and
FDP0.4 results. Figure 2 displays the corresponding
binding free energies obtained by the GB, FDP0.4, and
FDP0.25 models. The cancellation of errors is much better
in the case of FDP0.4 than for the GB energies, leading
to an rms error of 2.52 kcal mol-1 of FDP0.4 compared
to FDP0.25, whereas in the case of GB an rms error of
31.83 kcal mol-1 is obtained. The square of the correla-
tion coefficient between the GB and FDP0.25 binding
energies is R2 ) 0.58. Removing the 12 endothiapepsin
and 18 cytochrome c peroxidase complexes results in an
improved regression with R2 ) 0.76, which, however,
is still worse than that obtained in the FDP0.4/FDP0.25
case (R2 ) 0.99).
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3.2. Recognition of Near-Native Configurations.
In this section, we consider only binding site decoys to
analyze the ability of the scoring functions to recognize
near-native poses. In the forthcoming analyses, the
results for the CHARMm force field were obtained by
the RDIE method with a dielectric constant of 4 (ε(r) )
4r). We will refer to them as CHARMm-4r. This choice
allows a direct comparison with the DOCK-energy
calculations, which were performed with the same
treatment for the electrostatic interactions. The influ-
ence of the solvation models is discussed in the next
section.

Figure 3 shows for different data sets the percentage
of complexes for which the lowest energy decoy has an
rmsdN of less than 2 Å. CHARMm-4r, DOCK-energy,
ChemScore, DrugScore, and AutoDock reach a high rate
of success with percentages ranging from 80% to 90%,
whereas all the other functions yield recognition rates
of 53% to 65%. A decomposition of the CHARMm
potential energy values yields a recognition rate of 80%
for the sets 1a and 1b if only the van der Waals potential
is used. A receptor-based analysis shows that the
metalloprotease and lyase sets yield the lowest recogni-
tion rates for most of the scoring functions. This might
be due to the presence of a zinc in the binding site of
these complexes.

All the scoring functions fail to recognize near-native
configurations for the complexes 1cny, 1cnw, and 1avn.
In all these cases, the ligand is significantly solvent-
exposed and many decoys have a more favorable van
der Waals interaction energy than in the crystal struc-
ture. It can be expected that these decoys should be
disfavored by entropic and solvation effects, which are
not correctly captured by the analyzed scoring functions,
at least in these cases.

Figure 4 displays the results for the discriminative
power. For the data set 1a, the force-field-based poten-
tials CHARMm-4r and DOCK-energy perform best, with
discriminative power values of -1.58 and -1.47, re-
spectively. They are followed by DOCK-contact, Drug-

Table 2. Comparison of Electrostatic Energies Calculated by the GB and FDP Methods on a Data Set of 84 Complexesa

GB FDP0.4
b

complex receptor ligand complex receptor ligand

absolute averagec (%) 0.51 0.60 2.10 0.48 0.49 1.88
sloped (kcal mol-1) 0.997 0.997 1.011 1.004 1.004 1.009
interceptd (kcal mol-1) 22.80 35.17 1.71 -4.77 -7.55 -0.68
R2 d 0.9999 0.9999 0.9993 0.9999 0.9999 0.9999

a Benchmark energies were obtained from FDP with a grid spacing of 0.25 Å (FDP0.25). b FDP energies with a grid spacing of 0.4 Å.
c Error (%) ) 〈|GB/FDP0.4 - FDP0.25|/FDP0.25〉. d Slope, intercept, and square of the correlation coefficient R of the least-squares fit line of
the GB and FDP0.4 to the FDP0.25 energies.

Figure 2. Correlation between the FDP0.25 and GB binding
energies (left) and between the FDP0.25 and FDP0.4 binding
energies (right). FDP0.25 and FDP0.4 denote finite difference
Poisson calculations with a grid spacing of 0.25 and 0.4 Å,
respectively. The circles A and B comprise the cytochrome c
peroxidase and endothiapepsin complexes, respectively. Figure 3. Percentage of complexes for which the lowest

energy decoy is within 2 Å from the crystal structure. The
scoring functions are represented on the x-axis (CHRM,
CHARMm-RDIE (ε(r) ) 4r); DNrg, DOCK-Energy; DChm,
DOCK-chemical; DCnt, DOCK-contact; DrugS, DrugScore;
ChemS, ChemScore; AutoD, AutoDock), and the various data
sets are represented on the y-axis (All, whole set (189
complexes); All/NoTr., All without the complexes used to
calibrate ChemScore and AutoDock; AspPr., aspartic protease;
Oxido., oxidoreductase; SerPr., serine protease; MetPr., met-
alloprotease; Immu., immunoglobulin; Arab., L-arabinose bind-
ing protein; Mhc, major histocompatibility protein).

Figure 4. Discriminative power. A discriminative power value
of zero means no discriminative power, and the lower the
value, the more discriminative is the scoring function. See
Figure 3 for the definition of the scoring functions and the data
sets.
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Score, and ChemScore, with DP values of -1.20, -1.06,
and -0.93, respectively.

A similar analysis was performed using the docked
and misdocked structures together. For the data set 1a,
the percentage of complexes for which the lowest energy
decoy has an rmsdN of less than 2 Å was within 2% of
that obtained using only the docked structures for all
the scoring functions except PMF and DOCK-chemical
(data not shown). For these potentials, the deterioration
in the performance is 7% and 11%, respectively. This
result shows that the analyzed scoring functions dis-
criminate well the docked structures from the decoys
that are far from the binding site. This result is of
practical importance in docking when the location of the
binding site is not known. One should note, however,
that most of the binding sites that we considered are
deep. It is obviously more difficult to locate shallow
binding pockets, which may lead to a deterioration of
our results. A successful docking simulation using
AutoDock without prior knowledge of the binding site
has been reported.73 Recently, a new method for deter-
mining binding sites on proteins has been successfully
validated on seven protein-ligand complexes.74

We have found that with respect to our data set the
steric complementarity between the receptor and its
natural ligand is crucial for recognizing near-native
structures among a set of decoys. Our finding about the
role of steric interaction is consistent with a study that
evaluated the two docking functions, DOCK-energy and
PMF.37 This comparison was based on a set of 34
protein-ligand complexes. It was found that omitting
the electrostatic term in CHARMm has a small impact
on the ability of the molecular mechanics potential to
recognize near-native poses. The success rate, defined
as the percentage of complexes for which the lowest
energy decoy has an rmsdN smaller than 1.5 Å, was 79%
for the DOCK-energy potential and 59% for the PMF
potential. These results agree well with ours. Although
the significance of steric interactions may imply that
the electrostatic contribution is negligible, it should be
noted that this effect may be overemphasized because
of the preparation of the data set. Namely, minimizing
receptor and ligand in the crystal conformation may lead
to a perfect “induced fit” (which may carry over for only
slightly deviating decoys), whereas for all decoys, only
the ligand geometries were minimized while keeping the
receptor rigid. Thus, taking into account the rather
steep potential curves in the case of van der Waals
potentials compared to the electrostatic ones, a less-
than-ideal “induced fit” of more strongly deviating
decoys would be more easily recognized by the van der
Waals potential. In fact, the role of electrostatics has
been demonstrated in that optimization of electrostatic
interactions can be used to increase affinity and speci-
ficity.75

Very recently, an evaluation of 11 scoring functions
was reported.32 It was based on a data set of 100
protein-ligand complexes, 44 of which are deposited in
the LPDB, and the decoys were generated by the
docking program AutoDock. The recognition rates were
on average between 10% and 20% inferior to ours except
for ChemScore and D-Score, where D-Score stands for
the CScore implementation of the DOCK-energy poten-
tial. In these two cases, we found much higher recogni-

tion rates. For the latter scoring function, the discrep-
ancy comes partly from the fact that we used the
academic version of DOCK instead of D-Score. We also
assessed D-Score, and the results were significantly
worse with respect to DOCK-energy (data not shown).
For ChemScore, the origins of the discrepancy are not
clear. We note that in the study of Wang et al.32 a high
recognition rate was obtained for the FlexX scoring
function, which is also a regression-based scoring func-
tion with contributions similar to those of ChemScore.
It cannot be excluded that the difference comes from
the fact that the decoys were not generated in the same
way in the two studies. DrugScore was validated on two
sets of protein-ligand structures comprising 91 and 100
complexes, respectively.20 The decoys were generated by
the docking tools FlexX and DOCK, respectively. The
percentages of complexes found by DrugScore for which
the top-ranking pose has an rmsdN below 2 Å were 73%
and 70%, respectively. In addition, it was shown that
DrugScore and DOCK-energy yield similar results and
perform better than DOCK-chemical. These findings are
consistent with our study. Furthermore, while it was
shown that DrugScore recognizes well-docked structures
slightly better than AutoDock,76 we found that Au-
toDock yields slightly higher recognition rates than
DrugScore.

3.2.1. Effect of Solvation Models. Here, we analyze
the role of a variety of solvation models in conjunction
with the CHARMm force field with respect to the
recognition of near-native poses. In addition to the RDIE
model (see previous section), we also consider the CDIE
and GB models (see section 2 for a description). Figure
5 (top) depicts the percentage of complexes for which
the lowest energy decoy lies within 2 Å from the crystal
structure as a function of the solute dielectric constant.

Figure 5. Percentage of complexes for which the lowest
energy decoy is within 2 Å from the crystal structure (top) and
discriminative power (bottom) for the CDIE, RDIE, and GB
models as a function of the solute dielectric constant. Sets 1a
and 1b comprise 189 complexes with the modified and stan-
dard protonation states, respectively.
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These curves are almost flat for a dielectric constant
larger than 20 and are, therefore, not shown. With
respect to a van der Waals potential, the RDIE and GB
models give slightly better results (around 10%), al-
though in the latter case this is only achieved by using
the modified protonation states. For ε ) 4, the success
rate for the RDIE and GB models for set 1a is 89% and
87%, respectively.

Figure 5 (bottom) shows the behavior of the discrimi-
native power with respect to the dielectric constant. The
CHARMm van der Waals potential yields a DP value
of -1.34 and -1.33 for sets 1a and 1b, respectively. The
best results are obtained by the GB model with the
modified protonation states. For ε ) 4, GB gives a DP
value of -1.83 compared to -1.58 and -1.16 for RDIE
and CDIE, respectively. The GB model yields the best
discriminative power among all the scoring functions
analyzed in this study. At low ε (ε < 5), RDIE discrimi-
nates much better correctly docked structures from
misdocked ones than CDIE. These results suggest the
use of the RDIE model (with a dielectric constant of 3-4,
where the discriminative power is highest) as a com-
putationally efficient alternative to the GB model.

3.2.2. Effect of the Protonation States. Binding
affinities determined by an empirical scoring function
are relatively insensitive to the atomic details of the
receptor and the ligand. To a lesser extent, this fact also
holds for knowledge-based potentials. Therefore, adding
or removing a proton is not expected to change signifi-
cantly the binding energies calculated by such methods.
For instance, ChemScore does not distinguish hydrogen
bonds from ionic interactions. In general, empirical and
knowledge-based scoring functions do not require a
protonation model. This fact is also true for the GOLD
scoring function, which does not make use of partial
charges. Indeed, we consistently found very similar
results for these scoring functions with either the
standard or the modified protonation states. Larger
effects may be expected for force-field-based potentials.
For the CHARMm force field, this effect is investigated
in Figure 5. For low values of the dielectric constant,
adjusting the protonation states slightly improves the
ability of the CHARMm potential to recognize well-
docked structures. If we consider only the 84 complexes
having a modified protonation state, the increase in the
percentage of complexes for which the lowest energy
decoy has an rmsdN smaller than 2 Å is 17%, 11%, and
29% for the CDIE, RDIE, and GB models with ε ) 1,
respectively. For higher values of ε, the magnitude of
the electrostatic interactions is reduced, and therefore,
modifying the protonation state has a smaller effect.
Lower values of discriminative power are also obtained
by modifying the protonation states. The results are
most similar for the RDIE model, which yields a high
success rate already using the standard protonation
states for any value of the dielectric constant. The
DOCK-energy and chemical scoring functions, which
make use of a distance-dependent dielectric function,
yield results similar to those from the CHARMm-RDIE
model; i.e., a slight increase of performance is observed
when adjusting the protonation states. These results
suggest that different modeling of the protonation state
of the ligand and the receptor does not influence the
recognition of well-docked configurations. On the other

hand, a virtual screening experiment against dihydro-
folate reductase has shown that the protonation state
of methotrexate and pteridine affects significantly their
binding energies computed by the DOCK force field.13

Furthermore, these two ligands obtained a high rank
only in their protonated form, which is in agreement
with experiment.

3.2.3. Effect of the Zinc Charge Model. Ligand-
metal interactions are notoriously difficult to model, and
using different interaction models may influence sig-
nificantly binding energies computed by force-field
potentials. This effect is investigated here for zinc using
a charge of +2, thus assuming ionic interactions, or
determined by ab initio methods, taking into account
charge transfer between the metal and liganded protein
residues (see section 2). For the CHARMm force field
and ε ) 4, the two charge models yield very similar
percentages of recognition (around 70%). Considering
this result, one needs to keep in mind that we only
considered decoys for which the distance between the
zinc and its coordinated ligand atoms is close to the
value in the crystal structure (see section 2).

3.2.4. Analysis of Cross-Decoys. We selected
CHARMm-4r, DrugScore, and ChemScore to analyze
the set of cross-decoys because they have yielded the
highest decoy recognition rates on the “native” com-
plexes and represent the three classes of scoring func-
tion. Figure 6 shows the rmsdN of the lowest energy
configuration for the all-pairs decoys on trypsin (top
panels) and HIV-1 protease (bottom panels). On aver-
age, there is a slight decrease in performance with
respect to the case of the decoys (about 12%), except for
CHARMm-4r in the case of HIV-1 protease, in which
the recognition rates decrease from 86% for the decoys
to 52% for the cross-decoys. This result may be at-
tributed to the increased steepness of the CHARMm
force field compared to the other two functions. How-
ever, if we consider an rmsdN of 2.5 Å as a threshold
below which the recognition is considered to be success-
ful, the recognition rate decreases from 86% for the
decoys to 74% for the cross-decoys for CHARMm-4r in
the case of HIV-1 protease. This result shows that the
larger decrease of performance for CHARMm-4r with
respect to DrugScore and ChemScore is somewhat
misleading. Furthermore, the rigidity of the trypsin
receptors, as well as the smaller size of the ligands,
makes the recognition of well-docked configurations in
the case of the trypsin complexes much easier than in
the case of the HIV-1 complexes. A decomposition of the
CHARMm potential energy values yields a recognition
rate of 67% and 71% for the trypsin and HIV-1 decoys,
respectively, if only the van der Waals potential is used.
These percentages are 67% and 55% for the trypsin and
HIV-1 cross-decoys, respectively. This result shows that
the crucial role of steric complementarity between the
ligand and the receptor that was highligthed previously
in decoy recognition is still valid in cross-decoy recogni-
tion. The average rmsd between the trypsin receptors
is 0.51 Å (with contributions of 0.15 and 0.96 Å for the
backbone and side chain atoms, respectively), whereas
this value is 0.87 Å for the HIV-1 receptors (0.58 and
1.12 Å for the backbone and side chain atoms, respec-
tively). DrugScore yields success rates for the cross-
decoys that are even slightly higher than for the decoys.
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This may highlight an advantage of this knowledge-
based scoring function because it is more robust to small
changes in the receptor conformation than the force-
field-based or empirical scoring functions. On a per
complex basis, large variations in performance can be
observed. For instance, for DrugScore, the ligand 1ppc
is well recognized against the 1ppc, 1tpp, and 3ptb
receptors and poorly recognized against 1tng and 1pph.
The rmsd between 1ppc and the other trypsin receptors
ranges between 0.51 and 0.74 Å. This result indicates
that even small changes in the receptor conformation
can have a large impact on the results of a docking
simulation, and therefore, it may be important to
incorporate receptor flexibility into docking algorithms.

Cross-docking simulations can help to identify the
“ideal” receptor, i.e., the one that yields low rmsdN
values for the majority of the ligands docked into this
receptor. This receptor would be 3ptb and 2upj in the
case of trypsin and HIV-1 complexes, respectively
(Figure 6). This information might be useful in a virtual
screening experiment, when there is no other obvious
way to choose a receptor structure for a given target.
Such an approach is not applicable, however, when the
receptors display considerable flexibility because in this
case the binding site cannot be considered the same
across the various receptors. In a separate evaluation
of docking and cross-docking simulations for three
enzymes (thrombin, thermolysin, and neuraminidase)
that made use of ChemScore, it was reported that the
recognition rate decreases from 76% to 49% on going
from native to non-native docking.36 On the basis of a
set of 34 protein-ligand complexes, Perez and Ortiz
compared the performance of DOCK and PMF in
docking and cross-docking.37 In docking, the success rate
was 79% and 59% for DOCK and PMF, respectively,

while in cross-docking it decreases to 56% and 41%,
respectively. We found similar deterioration in perfor-
mance for CHARMm-4r and ChemScore but not for
DrugScore, which yields recognition rates for the cross-
decoys that are similar to those obtained for the decoys.

3.2.5. Influence of the Decoy and Cross-Decoy
Preparation. Decoys and cross-decoys were minimized
to an energy gradient of 0.05 kcal mol-1 Å-1 in the rigid
binding site of the receptor. Since the poses generated
in a docking simulation are usually not minimized to
the same extent, we investigated the outcome of using
minimized and nonminimized decoys and cross-decoys
on the recognition of well-docked structures. This
comparison was performed for the same sets of trypsin
and HIV-1 complexes shown in Figure 6, and the
recognition rates for the decoys and cross-decoys are
listed in Table 3. The main difference with respect to
the minimized decoys and cross-decoys lies in the large
decrease in performance observed for ChemScore. On
the other hand, CHARMm-4r and DrugScore perform
nearly equally well for the minimized and nonminimized
(cross-)decoys. It is also instructive to analyze the
behavior of the discriminative power in going from
minimized to nonminimized (cross-)decoys (Table 4). A
significant drop in discriminative power is observed for
CHARMm-4r with values close to zero for the nonmini-
mized (cross-)decoys. This finding suggests that it is
important to generate minimized poses (albeit with
more computational expense) to dock successfully a
ligand with a force-field-based scoring function. This
result is also true for ChemScore but to a lesser extent.
As noticed previously for the recognition rates, Drug-
Score gives discriminative power values that differ the

Figure 6. The rmsd (in Å) of the lowest energy configuration from the native structure for the all-pairs decoys on trypsin (top
panels) and HIV-1 protease (bottom panels). The results for CHARMm-4r, DrugScore, and ChemScore are shown in the left,
middle, and right panels, respectively. The x-axis and y-axis represent the different receptors and ligands, respectively. The average
recognition rates for the decoys (diagonal elements) and cross-decoys (off-diagonal elements), i.e., the percentages of complexes
for which the lowest energy decoy is within 2 Å from the crystal structure, are indicated above the plots.
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least between the two sets, indicating that the (free)
energy surface of this scoring function is the least
rugged.

3.3. Prediction of Binding Affinities. In this
section, we analyze the ability of the scoring functions
to rank binding energies. Figure 7 shows the square of
the correlation coefficients (R2 value) for the different
data sets using the minimized crystal structure. Chem-
Score achieves the highest correlation with an R2 value
of 0.51 for set 1a. ChemScore also yields the highest R2

value (R2 ) 0.43) for set 2, where the complexes used
to calibrate this scoring function and AutoDock were
removed. In particular, ChemScore outperforms all
other scoring functions except AutoDock for the immu-
noglobulin set, although no immunoglobin was included
in the training set. It also gives higher R2 values than
most of the other scoring functions for the data sets for
oxidoreductase, lyase, and others. The training set of
ChemScore contains 6 oxidoreductase, 1 lyase, and 11
other complexes that belong also to the LPDB. Further-
more, ChemScore ranks binding affinities significantly
better than the other regression-based scoring function
AutoDock. Although the results always depend on the
set of complexes, this suggests that ChemScore was
more broadly parametrized; for instance, a larger di-

versity of interactions was present in the training set.
In general, the other scoring functions perform well for
the serine protease and metalloprotease families and
unsatisfactorily for the remaining data sets. The aspar-
tic protease and oxidoreductase sets yield a low correla-
tion despite the wide range of binding affinities of 7 and
8 orders of magnitude, respectively. The CHARMm-4r
and DOCK-energy obtain similar correlation coefficients
for most of the sets. The R2 value between the binding
affinities computed by these two potentials is 0.79.
DOCK-chemical is the poorest scoring function to rank
binding affinities, whereas DOCK-contact, despite its
simplicity, yields results that are only slightly inferior
to CHARMm-4r or DrugScore. The correlation between
the binding affinities computed by all the scoring
functions, including also the logarithm of the ligand
molecular weight as a scoring function (see also below),
is generally high except when the R2 values are com-
puted by either DOCK-chemical or CHARMm-CDIE and
all the other scoring functions. For set 1a, the average
R2 value between the all-pairs scoring functions without
DOCK-chemical and CHARMm-CDIE and between
these two scoring functions and all the other ones is 0.66
and 0.24, respectively.

Correlation coefficients similar to our results were
obtained for DrugScore, Gold, and PMF in a previous
study.32 In contrast, we found better results for DOCK-
energy, ChemScore, and AutoDock than in ref 32. As
for the recognition of near-native poses, the origin of
the discrepancy for DOCK comes partly from the fact
that we used the academic version instead of the CScore
module. Different correlation values for ChemScore and
AutoDock may indicate a set dependence and, therefore,
a clear weakness of the regression-based scoring func-
tions. The ability of DrugScore and PMF to rank binding
affinities was previously investigated for various sets
of protein-ligand complexes.19,77 These two knowledge-
based functions achieved comparable results, for in-
stance, high correlation coefficients for the serine pro-
teases and metalloproteases. In our study, DrugScore
and PMF yield correlation values of 0.33 and 0.08 for
set 1a, respectively. It cannot be ruled out that the poor
performance of PMF originates partly from the fact that
we did not use the original implementation.

Table 3. Recognition of Well-Docked Structures among a Set of Decoys and Cross-Decoysa

trypsin HIV-1 protease

CHARMm-4r DrugScore ChemScore CHARMm-4r DrugScore ChemScore

decoys, min 83 67 100 86 57 100
decoys, non-min 100 50 50 86 71 86
cross-decoys, min 80 73 83 52 67 80
cross-decoys, non-min 67 57 53 55 55 43
a The percentage of complexes for which the lowest energy decoy is within 2 Å from the crystal structure is reported for minimized and

nonminimized sets of decoys and cross-decoys.

Table 4. Recognition of Well-Docked Structures among a Set of Decoys and Cross-Decoysa

trypsin HIV-1 protease

CHARMm-4r DrugScore ChemScore CHARMm-4r DrugScore ChemScore

decoys, min -0.92 -0.64 -0.87 -1.06 -0.84 -1.36
decoys, non-min -0.18 -0.77 -0.56 -0.11 -0.36 -0.48
cross-decoys, min -1.28 -0.79 -1.24 -0.80 -0.74 -1.13
cross-decoys, non-min -0.13 -0.80 -0.23 -0.09 -0.62 -0.33
a The discriminative power values are reported for minimized and nonminimized sets of decoys and cross-decoys.

Figure 7. Square of the correlation coefficients (R2) between
experimental and calculated binding energies. Values were set
to zero in the case of an anticorrelation. See Figure 3 for the
definition of scoring functions and data sets.
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The reason that all the scoring functions except
DOCK-chemical perform well for the serine protease
and metalloprotease families might relate to the fact
that for these two sets the binding affinities correlate
well with the ligand size. The R2 value between the
experimental binding affinities and the logarithm of the
ligand molecular weights is 0.81 and 0.58, respectively.
The logarithmic function was chosen because a survey
of experimental data has shown that the binding free
energy depends on the number of heavy atoms roughly
in a logarithmic way; i.e., it increases initially but then
levels off after 15 heavy atoms.78 ChemScore and
AutoDock yield high R2 values for the immunoglobulin
data set, whereas all the other scoring functions give
either no correlation (DrugScore) or even an anticorre-
lation. On the other hand, we note that the binding
energies calculated by the PB and GB models correlate
well with the experimental binding affinities of the
immunoglobulins for ε e 2. In this case, the correlation
coefficient depends strongly on the dielectric constant,
since it drops to zero for ε g 3 (see also below). For this
set, the experimental binding affinities anticorrelate
with the size of the ligand, and therefore, the success
of ChemScore and AutoDock can be attributed to their
entropic term, which takes into account the decrease
in rotational degrees of freedom upon binding. When
this contribution is removed, the square of the correla-
tion coefficient for AutoDock decreases from 0.72 to 0.02,
and the R2 value between the entropic contribution
alone and the experimental values is 0.60. Since the
CScore module does not provide the different contribu-
tions of the scoring functions, this effect is unknown for
ChemScore, but a similar result is expected. It can be
anticipated that adding to the other scoring functions
an entropic term like the one implemented in Chem-
Score or AutoDock should improve the results in this
case. However, it should be kept in mind that these
entropic contributions are based on simplified models.
In a virtual screening experiment, it is likely that higher
scores will be attributed to larger ligands if the scoring
function contains only terms for favorable interactions.
This problem can be overcome by considering the
restriction of the degrees of freedom upon binding of
(ideally) both binding partners. As a cheap alternative,
normalizing the binding energies on the basis of the
total number of heavy atoms has been proposed.79

Other reasons than the lack of an entropic term must
be invoked to understand the failure of the scoring
functions to rank binding affinities for the other classes.
High correlation coefficients might not be expected for
the L-arabinose binding proteins and the major histo-
compatibility proteins because of the small range of
binding affinity values in connection with the uncer-
tainties in the experimental values. This argument does
not hold for the aspartic protease and oxidoreductase
sets, however. In the former case, the enzyme undergoes
a significant conformational change upon binding. More-
over, crystallographic studies often show the presence
of a conserved water molecule bridging the inhibitor and
the two flaps. In all scoring functions used, ligand-
water-receptor interactions are not considered, how-
ever. In the oxidoreductase case, most of the ligands are
small and interact with the heme, whereas others are

bound to a zinc. As a result, the calculation of binding
affinities is particularly challenging.

3.3.1. Analysis of Solvation Models. We next
evaluate the performance of various solvation models
used in conjunction with the CHARMm force field for
ranking ligands with respect to binding energies. FDP
calculations were carried out with a grid spacing of 0.4
Å and a solute dielectric constant of either 1 (FDPε1) or
4 (FDPε4). The FDPε1 model yields no correlation with
experiment (data not shown). Better results are ob-
tained by FDPε4 for data set 1a. Yet the correlation is
moderate (R2 ) 0.35), only slightly larger than when
using only a van der Waals potential (R2 ) 0.29) and
comparable to the value obtained by CHARMm-4r (R2

) 0.34).
We then analyzed the performance of simpler solvent

models. These include the CDIE, RDIE, and GB models.
Figure 8 shows the correlation between results obtained
with these models and experimental binding affinities
as a function of the solute dielectric constant for data
sets 1a and 1b. The curves are almost flat for a dielectric
constant larger than 20 and are therefore not displayed.
It can be seen that none of these models perform
significantly better than a van der Waals potential (R2

) 0.29). The GB model yields the best result with R2 )
0.37 for ε ) 4 using the modified protonation states. At
low ε (ε < 5), RDIE gives much better results than CDIE
and almost as good results as GB with ε ) 4, albeit with
considerably less computational cost. The choice of the
optimal value of the dielectric constant depends on the
receptor. Our results show that for the GB model the
highest correlation coefficients for the data sets 3-11
are obtained using ε values that range between 1 and
6. Furthermore, solvation energies computed by an
electrostatic continuum model depend strongly on the
set of partial atomic charges and radii. Very recently,
it has been shown that slightly scaling the atomic radii
has a profound impact on binding energies computed
by the Poisson equation for benzamidine bound to
trypsin.72 This parameter dependence clearly points to
a limit of using such models for binding free energy
calculations. Finally, a comparison of the GB and PB
models with explicit solvent results has been reported
for the calculation of the binding free energy of an

Figure 8. Square of the correlation coefficients (R2) between
experimental and calculated binding energies for the CDIE,
RDIE, and GB models as a function of the solute dielectric
constant. Sets 1a and 1b comprise 189 complexes with the
modified and standard protonation states, respectively.
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octapeptide ligand to the murine MHC class I protein.80

Good agreement was found for the neutralized ligand,
but large discrepancies were obtained for the ionized
ligand.

3.3.2. Effect of the Protonation States. For all the
scoring functions (without considering CHARMm; see
below), we found very similar correlation values between
the standard and modified protonation states. On the
other hand, the results depend strongly on the solvation
model used with the CHARMm force field (Figure 8). A
higher correlation between experiment and FDP or GB
is achieved when using the complexes with the modified
protonation states. The improvement is significant for
GB at low ε. For ε ) 4, the R2 value goes from 0.36 to
0.55 when considering the 84 complexes with a modified
protonation state. Similar observations can be made for
the FDPε4 results. In contrast, these correlation values
are very similar for RDIE. For the CDIE model, the
results are better using the standard protonation states.
This finding suggests that using more realistic proto-
nation states in conjunction with a reasonably accurate
treatment of solvation effects may lead to better agree-
ment with experimental binding affinities. Nevertheless,
neither the GB model nor the Poisson equation ranks
significantly better binding affinities than a distance-
dependent dielectric function. The result for the RDIE
model does not imply that modifying the protonation
state has no impact on the RDIE binding scores. For ε

) 4, the average binding energies for the 84 complexes
with a modified protonation state differ by 34, 8, and
20 kcal/mol between the standard and modified proto-
nation states for the CDIE, RDIE, and GB model,
respectively. This result shows that adding a proton has
a large impact on binding energies calculated by a force-
field-based scoring function.

3.3.3. Effect of the Zinc Charge Model. The
correlation values for the metalloproteins are very low
(smaller than 0.1) for all the scoring functions using a
+2 charge for zinc (data not shown). It is therefore of
interest to investigate the effect of using charges
obtained by ab initio calculations. The correlation
achieved by the FDPε1 (R2 ) 0.36) and FDPε4 (R2 ) 0.23)
calculations in this case originates only from three
complexes, 1avn, 6cpa, and 7cpa, which have the highest
and the two lowest binding affinities among this set.
When these three complexes are removed (which re-
duces the range of binding affinities from 11 to 6 orders
of magnitude), the correlation drops to below 0.1.
Similar conclusions are found for the other scoring
potentials. Thus, it might be that our ab initio zinc
charges are not accurate enough, since we did not take
into account the charge transfer between zinc and the
ligand atoms. Furthermore, the zinc charge is probably
not the same in the bound and unbound states. How-
ever, if the interactions between zinc and surrounding
atoms are similar for a series of ligand, a large cancel-
lation of errors can be expected.81

3.3.4. Hydrophobic Effect. To model the effect of
hydrophobic desolvation, we added to the CHARMm
force field a contribution proportional to the solvent-
accessible surface area (SASA). This term was investi-
gated in connection with the CDIE, RDIE, GB, and PB
models. The surface tension constant (γ) was varied
between 5 and 30 cal mol-1 Å-2. Higher values of γ have

little physical meaning. For set 1a, the binding energies
computed by the SASA term alone and the van der
Waals potential correlate with an R2 value of 0.94. This
indicates that the SASA term is not expected to yield
much improvement. Furthermore, the R2 value between
the experimental affinities and the energies calculated
by the SASA model is 0.29. On a receptor basis, this
correlation is the highest for the serine protease and
metalloprotease families with R2 values of 0.77 and 0.56,
respectively. It is very low for the remaining classes with
even a strong anticorrelation for the immunoglobulin
family (R ) -0.78). Again, these findings reflect the
correlation (anticorrelation) of experimental binding
affinities with respect to the size of the ligand for these
data sets. In total, adding a SASA contribution to the
CHARMm leads only to small improvements. Recently,
deficiencies of a hydrophobic model based on the solvent-
accessible surface area have been discussed. Hydration
free energies of the cycloalkanes fall below the linear
correlation for the n-alkane analogues.82,83 Simulations
of small alkanes have suggested that the SASA model
can only describe the thermodynamics of cavity forma-
tion but does not correctly model the favorable van der
Waals interactions between interior atoms of the solute
and the solvent.84-86 These contributions may play an
important role in cases where the number of solvent-
exposed and buried atoms changes considerably, such
as in binding reactions.

4. Conclusion

We presented an assessment of nine scoring functions
for protein-ligand interactions using a database of 189
protein-ligand complexes. Most of the potentials that
we analyzed recognize well near-native configurations
among a set of decoys. CHARMm, DOCK-energy, Drug-
Score, ChemScore, and AutoDock showed the best
performance in discriminating near-native from mis-
docked structures. For these scoring functions, the
recognition rate was between 80% and 90%, which is
fairly remarkable and shows their usefulness in the
docking problem. The analysis of cross-decoys versus
decoys as well as minimized versus nonminimized poses
has shown that the knowledge-based potential Drug-
Score is less sensitive to the atomic details of the
receptor than the regression-based scoring function
ChemScore or the CHARMm force field. The cross-decoy
results also lead to the recommendation of evaluating
receptor structures with respect to their “dockability”
prior to predictive docking calculations.

We have found here that steric complementarity
between the ligand and the receptor is more important
than electrostatics to identify a near-native pose. As a
result, the treatment of solvation effects should have a
minor impact on the ability of a force-field potential to
recognize near-native configurations. In this regard, we
have shown that a computationally cheaper distance-
dependent dielectric function works almost as well as
a generalized Born model. However, it cannot be ex-
cluded that the steric effect may be overemphasized
because of the preparation of the data set. In the case
of absolute binding free energy prediction, errors do not
cancel out and different solvation contributions are
expected to play a larger role.
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On the other hand, our work has also confirmed that
the prediction of binding affinities still represents a
major challenge. For the 189 complexes in the LPDB,
only ChemScore achieves a fair correlation between the
binding scores and experimentally determined binding
energies. Most of the scoring functions perform well only
for the serine protease and metalloprotease families and
unsatisfactorily for the remaining data sets. For these
two sets, the experimental binding affinities correlate
well with the size of the ligands, which may explain
their success. Including terms that account for changes
in the degrees of freedom of the binding partners upon
binding is expected to yield an improvement in these
cases.

We have investigated in detail the effect of adjusting
the protonation state of binding site titratable groups.
Improvement in the case of binding affinity prediction
was achieved for the generalized Born model and the
Poisson equation used in conjunction with the CHARMm
potential. Despite this, these two models do not rank
significantly better binding affinities than a distance-
dependent dielectric function. It might be necessary to
reparametrize these models to obtain better results in
binding free energy calculations. Since more accurate
charges for zinc do not lead to a better agreement with
experiment, the prediction of affinities for metallopro-
teins remains problematic. Finally, we note that all of
the decoys and updated data have been integrated into
the LPDB and are available at http://lpdb.scripps.edu.
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