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Is the whole protein surface available for interaction with other proteins,
or are specific sites pre-assigned according to their biophysical and
structural character? And if so, is it possible to predict the location of the
binding site from the surface properties? These questions are answered
quantitatively by probing the surfaces of proteins using spheres of radius
of 10 Å on a database (DB) of 57 unique, non-homologous proteins
involved in heteromeric, transient protein–protein interactions for which
the structures of both the unbound and bound states were determined.
In structural terms, we found the binding site to have a preference for
b-sheets and for relatively long non-structured chains, but not for
a-helices. Chemically, aromatic side-chains show a clear preference for
binding sites. While the hydrophobic and polar content of the interface is
similar to the rest of the surface, hydrophobic and polar residues tend to
cluster in interfaces. In the crystal, the binding site has more bound
water molecules surrounding it, and a lower B-factor already in the
unbound protein. The same biophysical properties were found to hold
for the unbound and bound DBs. All the significant interface properties
were combined into ProMate, an interface prediction program. This was
followed by an optimization step to choose the best combination of
properties, as many of them are correlated. During optimization and
prediction, the tested proteins were not used for data collection, to avoid
over-fitting. The prediction algorithm is fully automated, and is used to
predict the location of potential binding sites on unbound proteins with
known structures. The algorithm is able to successfully predict the
location of the interface for about 70% of the proteins. The success rate of
the predictor was equal whether applied on the unbound DB or on the
disjoint bound DB. A prediction is assumed correct if over half of the
predicted continuous interface patch is indeed interface. The ability to
predict the location of protein–protein interfaces has far reaching impli-
cations both towards our understanding of specificity and kinetics of
binding, as well as in assisting in the analysis of the proteome.
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Introduction

Protein–protein interactions play a pivotal role
in the organization of life. While some interactions
form stable complexes resulting in permanent,
multi-protein structures, others are of a transient
nature. The latter are abundant in signal trans-
duction, protein–inhibitor complexes, antibody–
antigen interactions and others.

Structural knowledge on a residue and atom
level is one of the keys in achieving a better under-
standing of these processes. X-ray crystallography
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and NMR are without doubt the best methods to
obtain such information. However, they are too
demanding to be used to cover the proteome,
even for a relatively primitive organism such as
yeast, which already shows many thousands of
protein–protein interactions.

Computational methods are therefore needed to
assist the finding of potential binding sites for a
deeper understanding of protein–protein inter-
actions even if no structural data are available for
the complex. If the location of protein–protein
binding sites is imprinted in the structures of the
proteins, the in silico work of building a virtual
proteome would be greatly facilitated. Experi-
mental evidence supports the hypothesis that this
information can be extracted even without the
knowledge of the protein-partner. Wells et al.
showed that random peptides consistently bind
the same site on the Fc fragment of human
immunoglobulin G.1 Strynadka et al. have shown
that two different b-lactamase inhibitors (BLIP)
bind exactly the same site on TEM1.2 These
examples suggest the possibility that binding sur-
faces share common properties which distinguish
them from non-binding surfaces. According to this
hypothesis, not the whole surface is amenable to
be engaged in protein–protein interactions, but
only specific areas.

The chemical and structural properties of bind-
ing sites have been analyzed extensively. Looking
at the distribution of amino acid residues, it was
found that polar and aromatic residues are more
abundant in interfaces.3 – 8 Clusters of hydrophobic
residues were also found to assist binding.4,9 In
90% of the cases examined by Argos et al.,4 the
largest or second largest hydrophobic patch over-
lapped the interface. In addition to hydrophobic
interactions, electrostatic interactions between the
monomers are formed through hydrogen bonds
and salt-bridges; hydrogen bonds appear to be
more abundant in non-permanent complexes.6

Although rare, disulfide bonds have a large
stabilizing effect when occurring on interfaces.10

From a structural point of view, interfaces usually
appear in between domains, particularly in large
proteins.7,11,12 Regarding the secondary structure,
loops usually appear on the edges of interfaces,
contributing about 40% of the interfacial contacts.13

The shape of the interface is approximately
circular.10

The evolutionary conservation of amino acid
residues is an important property that contributes
to the identification of interfaces, albeit not to our
understanding of their nature.14 – 16 Some studies
specifically referred to the conservation of polar
amino acid residues, claiming that they provide
hot spots and specificity for binding.14,16

The analysis of binding sites is complicated by
the diverse repertoire of binding partners of
proteins, including DNA, small molecules,
peptides and other proteins. Protein–protein
complexes can be further divided into homo and
hetero-complexes. Homo-complexes are found

primarily as complexes. Hetero-complexes can be
divided into permanent (structural) complexes
and transient complexes. Among all protein–
protein complexes, the transient ones are maybe
the most interesting, as they exist both in the
bound and unbound states, with binding having a
functional role in regulating biological function.
Therefore, it is not surprising that a large spectrum
of kinetic and thermodynamic behaviors have been
attributed to different transient interactions,
ranging from very weak interactions between
electron transfer partners to extremely tight ones
in enzyme–inhibitor complexes. Other transient
hetero-complexes include protein–receptor com-
plexes, antibody–antigen complexes, signal trans-
duction partners, etc.

The varying nature of these interactions is
expected to be expressed through the different
interface properties. Permanent interfaces are
usually larger and more hydrophobic compared to
transient interfaces, and homo-dimers are more
densely packed than hetero-dimers (in particular
antibody–antigen complexes).10 Therefore, inter-
face properties of each of these sub-classes have to
be evaluated separately.

If binding sites indeed differ from the rest of the
protein, the development of an interface prediction
algorithm is called for, as the ability to map the
location of binding sites has many applications
both in silico and for the experimentalist. Thornton
et al.5 divided the protein’s surface into patches
and ranked them by their probability of forming
protein–protein interactions according to their
chemical and structural parameters. The par-
ameters applied include the solvation potential,
residue interface propensity, hydrophobicity,
planarity, protrusion and accessible surface area
(ASA). The prediction was considered successful
for 66% of the proteins. Three other groups tried
to predict the amino acid residues that construct
the interface, basing their algorithm mostly on
sequence information. Shan et al.17 used a neural
network to predict the interface residues based on
the sequence profile and solvent exposure data.
The fraction of interface residues according to
their interface definition is 29%; 65% of them were
identified as interface. Out of all the residues that
the predictor found to belong to the interface, 70%
were correct. Casadio et al.15 again used a neural
network and a multiple sequence alignment to
predict the interface residues. The predictor identi-
fied correctly 73% of the interface residues using a
relatively generous interface definition with which
the interface fraction is 40% of the total surface.
Yao et al.18 identified clusters of evolutionarily
important residues. Expecting these clusters to
overlap with protein-binding sites, a success rate
of 69% to 91% was declared, depending on the
measure used. Unfortunately, objective comparison
between all of these algorithms is difficult, as each
study used different interface definitions and
criteria for success; further, the predictions were
done using different databases (DBs).
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The aim of this work is to focus entirely on the
analysis of transient protein–protein hetero-
complexes and to use the information obtained to
develop an interface prediction program. The
expression of different properties is compared

over binding and non-binding surfaces and how
these are manifested in the structure of the
unbound proteins, versus the structures of the
same proteins solved in complex. All properties
are defined in a quantitative manner that enabled

Table 1. Summary of the results for all the unbound DB

Protein
No. Protein name PDB ID

Equivalent
bound

Reliability
of largest

patch

Fraction of
interface
detected

(sensitivity)
Patches

predicted

1 Barstar 1a19A 1brsD 1 0.29 1
2 Barnase 1a2pA 1brsA 0.9 0.19 1
3 Tumor suppressor p16ink4a 1a5e- 1bi7B 0.88 0.1 1
4 Acetylcholinesterase 1acl- 1fssA 0.24 0.14 1
5 Plastocyanin 1ag6- 2pcfA 0.7 0.16 1
6 cdc42hs 1aje- 1am4D 0.72 0.3 1
7 rhogdi 1ajw- 1cc0E 0.73 0.24 1
8 fkbp-rapamycin-binding domain 1aueA 1fapB 0.9 0.35 1
9 Trypsin inhibitor 1avu- 1avwB 1 0.29 2
10 Human procarboxypeptidase a2 1aye- 1dtdA 0.54 0.24 1
11 Hydrolase angiogenin 1b1eA 1a4yB 0.69 0.24 1
12 Bifunctional trypsin/alpha-amylase

inhibitor (rbi)
1bip- 1tmqB 1 0.27 1

13 Cytochrome f 1ctm- 2pcfB 1 0.12 1
14 Granulocyte colony stimulating factor 1cto- 1cd9B 0.36 0.29 1
15 Receptor chey mutant 1cye- 1eayA 0 0 1
16 Calcium-free equine plasma gelsolin 1d0nA 1c0fS 0.67 0.03 2
17 Hydrolase inhibitor 1d2bA 1ueaB 0.92 0.31 1
18 Transferase 1ekxA 1d09A 0 0 1
19 Bovine chymotrypsinogen a 1ex3A 1cgiE 1 0.29 1
20 Neuronal t-snare syntaxin-1a 1ez3A 1dn1B 1 0.06 1
21 Amino-terminal domain of enzyme i from

Escherichia coli
1eza- 3ezaA 0

22 rgs4 1eztA 1agrE 0.54 0.13 1
23 Enteropathogenic E. coli intimin 1f00I 1f02I 0 0 1
24 Coxsackie virus and adenovirus receptor 1f5wA 1kacB 1 0.06 1
25 fk506 binding protein 1fkl- 1b6cA 1 0.2 1
26 Uracil-DNA glycosylase 1flzA 1euiA 0.52 0.19 1
27 Neuronal sec1 1fvhA 1dn1A 0
28 Hydrolase 1g4kA 1ueaA 0.78 0.21 1
29 Radixin ferm domain 1gc7A 1ef1A 0.78 0.06 1
30 Granulocyte colony stimulating factor

(rhg-csf)
1gnc- 1cd9A 0.06 0.02 1

31 N-terminal region of p67phox 1hh8A 1e96B 0.5 0.02 1
32 Lipase (EC 3.1.1.3) 1hplA 1ethA 0.07 0.03 1
33 p53 core DNA-binding domain 1hu8A 1ycsA 0.05 0.02 1
34 Interleukin-1 beta 1iob- 1itbA 0.31 0.06 1
35 Actin 1j6zA 1c0fA 0 0 1
36 a-Amylase lysozyme 1jae- 1tmqA 0.5 0.13 1
37 (EC 3.5.1.28) mutant 1lba- 1aroL 0.6 0.24 1
38 Knob domain from adenovirus serotype 12 1nobA 1kacA 0.07 0.03 1
39 Nitric oxide synthase oxygenase domain 1nos- 1nocA 0 0 1
40 Porcine pancreatic procolipase b 1pco- 1ethB 0.6 0.12 1
41 Profiling 1pne- 1hluP 0 0 1
42 Phosphotransferase (hpr) 1poh- 1ggrB 0
43 Papain (EC 4.3.22.2) 1ppp- 1stfE 0.91 0.3 1
44 Streptokinase domain b 1qqrA 1bmlC 0.85 0.32 1
45 Rhogap 1rgp- 1am4A 0.5 0.05 1
46 Selenosubtilisin 1selA 1cseE 0.61 0.27 1
47 Cyclin a 1vin- 1finB 0
48 p120gap 1wer- 1wq1G 0
49 b-Lactamase tem1 1xpb- 1jtgA 0
50 Ribonuclease inhibitor 2bnh- 1a4yA 1 0.04 1
51 Cyclophilin a 2cpl- 1ak4A 0.76 0.23 1
52 Glucose-specific phosphocarrier 2f3gA 1ggrA 1 0.12 1
53 Negative factor (fprotein) 2nef- 1avzB 0.57 0.24 1
54 RalGEF-rbd streptomyces 2rgf- 1lfdA 0.2 0.05 1
55 Subtilisin inhibitor cytochrome c

peroxidase
3ssi- 2sicI 1 0.24 2

56 (EC 1.11.1.5) mutant 6ccp- 2pcbA 0 0 2
57 BLIP Personal

communication
1jtgB 0.94 0.22 1
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us to use them for the computational prediction of
binding sites, without any prior knowledge of the
binding partner.

Results

The work presented here is divided into two sec-
tions. In the first, we characterize quantitative
differences between protein surfaces that are
involved in protein–protein interactions, and the
remaining protein surface. In the second section,
we use the information gained to develop a com-
puter algorithm that predicts the location of a
protein–protein binding site on the structure of an
unbound protein. This work focuses entirely on
transient hetero-complexes, excluding antibody–
antigen interactions because of their specific
nature. The extraction of the different interface
properties was executed independently on three
DBs. The unbound DB containing 57 structures,
the bound DB containing 92 proteins and the
disjoint bound DB containing 35 structures. The
disjoint DB consists of proteins from the bound
DB, which have no homologous structure in the

unbound DB. The identity of the proteins in the
three DBs is given in Tables 1 and 2. The set of
bound structures that have an analogous form in
the unbound DB is referred to as the homologous
bound DB. The comparison of the three DBs
verifies the stability of the results relative to
differences in the DB, and demonstrates the
differences between the bound and unbound
states.

For the statistical analysis of binding versus non-
binding surfaces, a protein’s surface was sampled
using circles with a radius of 10 Å around anchor-
ing dots, which are uniformly distributed over the
monomer’s surface (0.1 dot/Å2). Circles with Con-
nolly interface index, CII $ 0.7 were considered
interface, and those with CII ¼ 0 as surface. The
rest (boundary) were not used for data retrieval. It
is important to note that only surface residues as
determined using Connolly’s MS dots program†
were used for the analysis and later for the
prediction.

Table 2. Summary of the results for the disjoint bound DB

Protein
No. Protein name PDB ID

Reliability
of largest

patch

Fraction of
interface
detected

(sensitivity)

No. of
patches

predicted

Reliability
of best
patcha

1 HIV-1 capsid 1ak4D 0
2 T7 RNA polymerase 1aroP 0 0 3 0.14
3 Cyclin-dependent kinase 6 1bi7A 0.56 0.08 2
4 Son of sevenless-1 1bkdS 0 0 3 1
5 Interleukin-1 beta convertase 1bmqB 0.88 0.15 1
6 a-1,4-Glucan-4-glucanohydrolase 1bplA 0.72 0.19 1
7 b2-Bungarotoxin 1bunA 0 0 1
8 Ubiquitin yuh1-ubal 1 cmxA 0.76 0.16 1
9 Succinyl-CoA synthetase a chain 1cqiA 0.95 0.17 1
10 Succinyl-CoA synthetase b chain 1cqiB 1 0.08 1
11 Fibroblast growth factor receptor 1 1cvsC 0.8 0.07 1
12 PKN 1cxzB 0.33 0.05 1
13 Aspartate carbamoyltransferase regulatory chain 1d09B 1 0.46 2
14 Bean lectin-like inhibitor 1dhkB 0.75 0.38 1
15 Naphthalene 1,2-dioxygenase a-subunit 1eg9A 0.34 0.1 2
16 Naphthalene 1,2-dioxygenase b-subunit 1eg9B 0.69 0.15 2
17 Colicin e9 1emvB 1 0.07 1
18 Elongation factor eef1ba 1f60B 1 0.03 1
19 Flavocytochrome c 1fcdA 1 0.02 1
20 Sulfide dehydrogenase 1fcdC 0.67 0.2 1
21 Hydrogenase 1frvA 0.37 0.14 1
22 Hydrogenase 1frvB 0.92 0.15 2 1
23 b-Lactamase inhibitor protein ii 1jtdB 0.39 0.48 1
24 Type 1 chloramphenicol acetyltransferase 1nocB 0.05 0.03 1
25 Chaperone protein papd 1pdkA 0 0 2 1
26 Protein papk 1pdkB 0.87 0.16 1
27 Karyopherin beta2 1qbkB 0.07 0.01 5
28 Nuclear pore complex protein nup358 1rrpB 0.25 0.06 2 1
29 Erwinia chrysanthemi inhibitor 1smpI 0
30 Stefin b 1stfI 0.75 0.09 1
31 Transcription initiation factor tfiid 1tbaB 0.62 0.09 2 1
32 Rabphilin-3a 1zbdB 0 0 2 1
33 Klebsiella aerogenes urease 2kauC 0 0 1
34 Cytochrome c 2pcbB 0.55 0.15 1
35 Human growth hormone receptor 3hhrB 1 0.17 2

a For cases where the largest patch is not the best patch.

† http://www.biohedron.com/msp.html
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The chemical composition of binding sites

Amino acid propensities in binding sites

The amino acid preference of protein–protein
interfaces has been analyzed previously.3,6,7,17,19

Therefore, this property is a good indicator to
validate the data extraction method used by us in
comparison to other methods. The amino acid
propensity shown in Figure 1 agrees well with
those presented by Thornton19 and by Janin,7

although they evaluated the ASA contribution of
amino acid residues while we counted them. Tyr,
Met, Cys and His are the most favored on the
interface, Thr, Pro, Lys, Glu, and Ala are least
commonly found on the interface. Janin also
found Arg to be abundant in interfaces, while we
did not. No significant difference was found
between the bound versus the unbound DBs for
this property.

In addition to the analysis of surface residues,
we determined the distribution of individual
atoms on the protein’s surface (normalized to the
amino acid distribution). The difference between
this analysis and the former is that here only

exposed atoms (and not amino acid) were ana-
lyzed. The results shown in Figure 2 emphasize
the significant role of aromatic functional groups
in the interface. Almost all of the atoms displaying
a significant difference in the interface are the
benzene carbon atoms of Trp, Phe and Tyr.
Interestingly, all atoms with differential interface
propensities are carbon atoms.

A third method for analyzing the protein’s sur-
face composition is to group all surface atoms
according to their chemical character. All atoms
(including backbone) were grouped into five
categories: positively or negatively charged,
aromatic, hydrophobic or polar. Analyzing the
data according to chemical character shows little
significant differences between the binding site
and the rest of the protein (Figure 3). The only
unequivocal conclusion that can be drawn is
regarding the higher frequency of atoms belonging
to aromatic functional groups, which are preferred
in binding sites.

Charged atoms seem to have a preference for
non-interfaces. However, this is more significant at
the amino acid level. An interesting conclusion is

Figure 1. The amino acid distribution in the unbound, bound and disjoint bound DBs. The error bars are the 70%
confidence intervals. The names of the amino acids with non-overlapping error bars are marked in upper case. The
bars are sorted from right to left in an increasing preference for binding sites. The distribution is stable over the three
DBs. Pro, Lys, Thr, Ala and Glu appear to be preferred on the regular surface while Met, Tyr and Cys are favored on
binding surfaces.
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that hydrophobic atoms have no apparent
preference for interfaces.

Pairwise AA distribution

Cooperativity between different attributes of the
protein’s surface is believed to be important for

binding. For some complexes, “networks” of inter-
actions between the monomers have been
observed; i.e. interactions that involve more than a
single atom from each monomer (charged polar or
hydrophobic).20,21 For those, we would expect to
find repeating patterns of atoms on the binding
surface. We focused on patterns of spatially close,
neighboring amino acid residues, which exhibit

Figure 2. The distribution of atoms on protein surfaces. This is similar to the amino acid distribution, but the surface
properties of interfaces are analyzed in relation to property of the individual atoms displayed on the protein’s surface.
Only atom types with a significantly different propensity for interfaces are shown. Results are given for the unbound,
bound and disjoint bound DB. The frequency of the atoms is normalized by the relevant amino acid frequency. Atoms
that participate in aromatic rings seem to play an important role in interfaces.

Figure 3. The chemical character distribution. Here, all atoms are categorized according to their chemical character.
The only clear and stable difference is the higher preference for aromatic groups at interfaces.
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certain correlated properties. Two amino acid
residues were defined to be neighbors if the
distance between their Ca atoms was smaller than
6 Å. A pair of neighboring amino acid residues
was considered to be part of the interface if the Ca

of both residues in the pair appeared within an
interface circle. The possible pairs were divided
into six distinct categories, according to the hydro-
phobic/polar/charged nature of the amino acid
residues in the pair (Figure 4).

Though the differences seem to be minor, there is
a stable preference for pairs of hydrophobic amino
acid residues. This appears to be an expression of
the fact that interfaces tend to overlap large hydro-
phobic patches.21 The same pairing tendency also
appears for polar amino acid residues, suggesting
the existence of polar patches, similar to the
hydrophobic ones. Physically, this would suggest
a non-random distribution of residues in inter-
faces, with a preference to cluster hydrophobic
and polar residues separately.

Evolutionary conservation

It has been long suggested that functional
residues tend to be evolutionarily conserved. Shan
et al.17 have suggested this to be true also for pro-
tein–protein interfaces. Here, we used a simplified
version of this algorithm. Each amino acid was set
to the value that appears in the diagonal of the
PSI-BLAST output matrix and the distribution of
these values was explored. Using our interface
definition, the higher degree of conservation com-
pared to the rest of the protein’s surface is still
apparent.

Geometric properties

Secondary structure

Proteins having both b-strands and a-helices
were selected from our DBs (46,79 and 30 for the

unbound, bound and disjoint bound DBs, respect-
ively) and their secondary structure extracted
using the program: PROMOTIF.22 The statistical
distributions of secondary structures are displayed
in Figure 5. Most striking is the preference of
b-strands for interfaces, and at the same time, the
disfavoring of a-helices. This preference has major
implications towards the structure of interface
regions, as b-strands form flat areas with three-
dimensional connectivity, while a-helices form
cylindrical perturbing surface structures with the
three-dimensional structure following the one-
dimensional sequence. The preferences for
b-strands and a-helices is the reverse of those
found by Thornton et al.6 This may be the result of
the basically different DBs used. While we com-
pletely excluded homodimers and antibody–
antigen complexes, these types of complexes
constitute about two-thirds of Thornton’s DB.
Furthermore, the constraint demanding both sheets
and helices to appear in each of the proteins
analyzed is unique to this work.

The length of non-regular secondary structures

The flexibility of polymers varies with their
length. Below a certain length, termed the persist-
ence length, a polymer appears to be rigid. The
persistence length of polypeptides is usually in
the range of five amino acid residues (AA) to
10 AA, depending on their specific composition.23

Therefore, there should be a difference in the
nature of the unstructured regions of the protein
as a function of their length.

Here, each AA that is not part of a b-strand,
a-helix or a 3,10-helix is considered to be a non-
regular secondary structure (NR2St or “loop”).
The distribution of the NR2St length is presented
in Figure 6. There is a clear preference for
interfaces to appear in regions of long loops. The
mean loop length within the interface is 11.17 AA.
To evaluate the significance of this value, we

Figure 4. Amino acid pair distribution. A pair of amino acid residues is defined as any two residues with a Ca

distance of under 6 Å residing within a circle. Then, all pairs were categorized according to chemical character,
charged (C), hydrophobic (H) and polar (P). Capital letters are used for statistically significant pairs.
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randomly selected 1000 samples equal to the num-
ber of interface samples, from the non-interface
samples. For those, the mean loop length was
found to be 8.75 ^ 0.15. The p-value for that result
is bellow matlab’s precision. These results show
that long, flexible NR2St are preferred to be located
within binding sites, apparently giving greater
flexibility for interfaces.

Sequence distance score

The amino acid distance in three dimensions is
not directly related to the one-dimensional distance
between residues along the peptide chain. Here,
we wanted to evaluate whether the distribution of
all the sequence distances within 10 Å circles on
the protein’s surface is similar to that of interface
surfaces (Figure 7). The interface is clearly under-

represented at the shortest sequence distances
(,6 AA). No significant differences could be
found at longer sequence distances. This result is
in line with the above-mentioned regarding
secondary structure preferences. A preference for
b-strands in interfaces is expected to show a
preference for longer distances. Contrary to all
other graphs shown here, the confidence intervals
in Figure 7 are the standard deviation of the
frequency values when analyzing each protein
separately.

Specific information obtained from
crystal structures

The coordinates of an X-ray solved protein
structure include information concerning the
B-factor for each residue (also referred to as the

Figure 6. The distribution of
non-regular secondary-structure
lengths. NR2St are defined as
regions of the protein’s backbone
that are not part of helices or
strands. Longer regions are signifi-
cantly preferred within interfaces.

Figure 5. Secondary structure distribution. Only statistically significant bars are shown for each DB (unbound,
bound, disjoint bound). This distribution was extracted only for proteins that contain both helices and sheets. The
preference for b-strands over a-helices within interfaces is clearly the most outstanding result.
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temperature factor (TF)), as well as the location of
water molecules surrounding the protein. Both of
these were found to differ significantly between
binding and non-binding surfaces.

Temperature factor

The TF is a measure of the oscillations of an atom
around its mean position. It has long been recog-
nized that in a complex, interface residues have
lower TFs than the exterior of the protein in

general.6 Here, we analyzed whether the same can
be said for the unbound form (Figure 8). Indeed,
the TF distribution is somewhat lower for the inter-
face already in the unbound state. After complexa-
tion, the interface atoms become buried, and their
B-factor drops further. Two statistical tests were
performed to evaluate the measure of significance
of this result. The Kolmogorov–Smirnov test com-
paring interfaces versus the rest of the surface on
the unbound DB gave a p-value of 1 £ 10245. The
mean TF of a thousand samples randomly selected

Figure 7. The distribution of the sequence distance. This is calculated as all distances along the polypeptide chain
within a circle. The error bars are the standard deviation of the values over all the unbound proteins. A zoom into
the shortest distances (up to 10 AA distance) is given in (b).

Figure 8. The B-factor (TF) distribution over the unbound, bound and disjoint bound DBs. B-factor values are
retrieved from the structure coordinates. The interface atoms appear to have lower B-factors already in the unbound
state.

Predicting Protein–Protein Binding Sites 189



from the non-interface surfaces was found to be
34.7 ^ 0.2. In comparison, the mean TF of the inter-
face sample is 31.5. The p-value for randomly
selecting a sample with this TF is 2.2 £ 10245. The
number of proteins in the DBs for which TF infor-
mation is available is 47 unbound, 88 bound and
34 disjoint unbound.

The position of water in crystal structures

Proteins reside and interact in aqueous solutions.
Thus, a reasonable way for a binding surface to
advertise its position is by altering the structure of
the surrounding water-cage. If this indeed is the
case, some of that information might be reflected
in the static location of water molecules found in
crystal structures. Therefore, we analyzed the
amount of bound water surrounding the different
regions of the protein. As the number of water
molecules is also a reflection of the resolutions of
the X-ray structure, the water score is the normalized
and not the absolute number of water molecules
within a circle. A standard normalization
procedure was applied: reducing the mean of all
the circles of a protein and dividing them by their
standard deviation.

Examining Figure 9 reveals that both in complex
and as unbound proteins, interfaces are solvated
by more bound water. In the complex, these
molecules are probably caught in the interfacial
space. More interesting is the meaning of this
finding for the unbound proteome. If in fact the
water’s structure or dynamics is different near
interfaces, this would suggest a means to transmit
the location of an interface over the first water
shell. In other words, this information would be
available to an incoming protein partner.

The number of proteins for which the infor-

mation of the location of water was available is 40,
67 and 22 for the unbound, bound and disjoint-
bound DBs, respectively. Using the Kolmogorov–
Smirnov test to measure significance, the p-values
were 2 £ 10235, zero (within matlab’s precision)
and 3 £ 10225, respectively. The three p-values
extracted from the estimation of the mean were
within matlab’s precision.

The high water content near binding sites may
be rationalized by the higher degree of order
found for the amino acid distribution, forming
areas of polar and hydrophobic patches, with the
polar patches providing the coordination points
for water. Intuitively, having a higher number of
ordered water molecules near the interface is dis-
advantageous for complex formation, as the water
has to be removed. However, comparing the
bound and unbound DBs reveals that the relative
amount of water in the interface is higher also in
the bound form, suggesting a specific role for
these water molecules also in the bound state.

Since both a preference for crystallographic
water, and for a low B-factor were found at
interfaces, one may wonder whether this is not
due to the potential of binding sites to be involved
in crystal contacts. If this is the case (which we
cannot prove or disprove for the DB as the amount
of work involved would be enormous), then we
measure a secondary effect. Nevertheless, the
conclusion would be similar, as the formation of
crystal contacts at a certain position would suggest
physico-chemical differences of the involved sur-
face patches. In such a case, these two properties
would clearly be dependent.

ProMate: predicting the interface location

Interface characterization was done bearing in

Figure 9. The distribution of water molecules on the unbound, bound and disjoint bound DBs. The number of water
molecules is counted for interface and surface circles, and normalized to the mean and standard deviation of all the
water molecules around the protein. Both in the bound and in the unbound state there is more bound water at the
interface.
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mind the goal of computing a protein interface
prediction program. For a detailed description of
how ProMate works, see Methods. In summary,
the prediction process starts with a stage of pre-
processing, where the training DB is analyzed and
the specific properties are extracted. Then, for a
given new protein, a set of surface dots (SD) at a
density of 0.1 Å2 is extracted. The interface
probability of each surface dot is estimated accord-
ing to the distribution of each property within a
10 Å radii circle around it. All of these values are
combined to give a final score. These scores go
though a smoothing process that fixes the circle’s
score according to the scores of its neighbors.
From these, a set of amino acid residues that
received the highest 10% of the scores is selected,
given that they scored at least 0.7. The final stage
is the extraction of predicted interface patches. A
patch is a set of such predicted interface amino
acid residues, where each residue is not more than
13 Å Ca-distant from all the others. The minimum
patch size is 2 AA. The predicted interface is the
largest of all the patches.

Choosing the combination of the final score

Significant scores were extracted for 13 different
properties that were shown to be relevant for the
distinction between binding and non-binding
surfaces. Namely, the amino acid and atom distri-
bution, chemical character of atoms, pairs of
amino acid residues, evolutionary conservation,
sequence distance within a circle, secondary struc-
ture and length of NR2Sts. Crystallographic data
were also used whenever available (distribution of
B-factor and bound water). In addition, several
other scores that are not mentioned here in detail
were tested. Such was the hydrophobic patch
score, using the program QUILT.24 This score is
based on the finding that the largest hydrophobic
patch tends to overlap the interface. Here, we
used both the size distribution of the hydrophobic
patches as well as its rank. Another score tested
was the domains’ score that is based on the
assumption that, for large proteins, interfaces tend
to appear between domains. This score did not
prove to be very useful.

With some of the scores being mutually depen-
dent, an optimization procedure is required to
choose the combination of scores that produces
the best interface predictions. However, one has to
be careful not to over-fit the data. Therefore, the
success of a certain combination of scores was
evaluated using a cross-validation method. The
DB containing all unbound proteins was divided
into 11 samples. Each sample defines a test set con-
taining five or six proteins, and a training set con-
taining all the other proteins from the unbound
DB. All the 11 test sets were disjoint and altogether
they covered the whole unbound DB. For each of
the 11 samples, the probabilities were extracted for
the training set, normalized regarding the specific
scores combination and run on the test set for pre-

diction. A prediction was considered successful if
it was reliable. Specifically, if at least half of the
amino acid residues that were declared as interface
by the predictor were truly so. Only the biggest
patch was considered as the predicted interface
(see Methods). The success rate of the score combi-
nation is described by the mean, and standard
deviation of the success fraction over the 11
samples. This optimization method is problematic,
in the sense that the same set of 11 samples is
used for all combinations, and thus the optimized
combination might be biased for it. This was done
due to computational resource limitations, but we
do not believe that it would affect the final results
significantly.

Enumeration over all possible combinations was
not feasible due to computer power limitations.
Thus only a subspace of the 213 possible combi-
nations can be scanned thoroughly. The goal of
the following analysis was to increase the chances
that the best combination is in this subspace. The
general scheme is presented here, and is described
in detail in Methods. In the first stage, four scores
that from their separate analysis seemed most
important, and intuitively least dependent were
fixed, while all other scores where enumerated. A
comparison of the success rate of each of the non-
fixed scores (Figure 10(a)) helped us to evaluate its
contribution. From this analysis, we can objectively
conclude on which subspace we should focus. The
chosen subspace is the one keeping the scores that
had the highest contribution in Figure 10(a) fixed.
For comparison, the same analysis of the
contribution of each score is presented in
Figure 10(b).

Explicitly, at the first stage, four scores were
fixed (atom distribution, water, sequence distance
and hydrophobic patch rank), and all the possible
combinations of the remaining nine scores were
enumerated (512 runs). The different combinations
of scores overlapped with one another, as with
each run only one score was altered. The many
pairing combinations that were produced (these
are combinations that are identical except for a
single score) were used to learn about the contri-
bution of each score to the predictor’s success.
The relative contribution of all the variable scores
towards the final score is summarized in
Figure 10(a). The contribution of each score at all
combinations is plotted using the matlab boxplot
function. The box is formed between the lower
and upper quartile, with a line showing the
median. The notches are a robust estimate of the
uncertainty about the mean. All the data values
that fall outside the box are displayed using a plus
(þ ) symbol. From this plot, the scores that appear
to be most constructive for the goal of interface
prediction are the NR2St, evolutionary conserva-
tion, chemical character and, to a lesser extent, the
amino acid pairs distribution. At the second stage,
the first three scores were fixed, and all the rest
were enumerated. The results for the second step
of optimization are shown in Figure 10(b). The
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scores giving the highest overall contributions are
amino acid pairs, sequence distance, water, and
atoms distribution. An interesting case is the score
for amino acid pairs, which appears to have a sig-
nificant contribution only in the second stage
(Figure 10(b)). This suggests that it has dependen-
cies with some of the fixed scores of the first stage
(presumably the atoms scores), which makes its
contribution less significant. The domains score,
which was not used at the first step of optimiz-
ation, seems also to have some contribution. Sur-
prisingly, the amino acid distribution does not
contribute much. This may be due to the high
dependency of this score on both the evolutionary
conservation and chemical character scores. The
optimization method clearly shows that certain
scores, which gave statistically significant results
in the interface definition section, are seemingly
mutually dependent, and thus lose their import-
ance upon optimization. Choosing the atoms score
in the first stage probably forced the convergence
to a certain subset that does not contain the amino
acid distribution score. Starting from the amino
acid score may have affected the final combination,
but the quality is not expected to improve
significantly.

The optimization method used here ended up in
an optimal scores combination that is probably a
local optimum. Fixing different three scores in the

beginning might have ended up in a somewhat
different combination. Yet, repeating the optimiz-
ation twice, while fixing different scores, examined
the contribution of each score with respect to a
group of other scores. Therefore, Figure 10 supplies
a justification for each of the scores that appear in
the final optimal combination. Some dependencies
might still exist between two non-fixed scores, but
they are reduced by the normalization to their
actual distribution in the training DB.

Evaluating the success of the optimized
ProMate score

The most successful score combination contains
the following scores: NR2St, atom distribution,
amino acid pairs, evolutionary conservation,
chemical character, water, sequence distance,
hydrophobic patches rank, and secondary struc-
ture. This combination successfully predicts the
correct interface for 36 out of 51 proteins (Table 1,
showing the largest patch). For the remaining six
proteins in the unbound DB, no interface was
found at all. One has to remember that, as
explained above, the predictions are done without
using the predicted protein (plus four or five
others) in the training set. For four proteins, the
predictor found two interface patches. For all the
rest, only one patch was found. The results given

Figure 10. Finding the best combination of scores. The DB containing all unbound proteins was divided into 11
samples, such that the test set containing five or six proteins each is not used for training. For each of the 11 samples,
the probabilities were extracted for the training set, normalized regarding the specific scores combination and run on
the test set for prediction. A prediction was considered to be successful if it was reliable (over half the amino acid
residues predicted as interface are correct). Only the biggest patch was considered as the predicted interface (see
Methods). In the first step, the predictor was run over all score combinations shown on the y-axis of (a), with four
scores being fixed (hydrophobic patch rank, sequence distance, atoms and water). The difference in the mean success
rate over the 11 test sets was calculated for each pairing combination. The distribution of these values is presented
using a boxplot. The vertical lines of the box are the lower and upper quartiles, and the median. The notches are the
estimated range of the mean. All samples that fall outside the box are showed using a plus (þ ) sign. The scores that
consistently improve the predictions according to this plot are evolutionary conservation, length of NR2St chemical
character and amino acid pairs. The first three were chosen as fixed for the second phase of enumeration. Its results
are shown in (b). Scores that are consistently improving at this phase are amino acid pairs, water, sequence distance
and atoms. The best scores from the first and second step were chosen to be used for the predictor.
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in Table 1 are of the largest patch found. For com-
parison, it would be worth noting that predicting
the interface using the four scores that were chosen
to be fixed at the first optimization stage
(Figure 10(a)) resulted with 44 predictions, of
which 25 were successful. For the fixed combi-
nation of the second optimization stage
(Figure 10(b)), 17 proteins were predicted success-
fully out of 29 predicted interface patches. All
these numbers have to be compared to a random
model to evaluate their significance. To create a
random model we reshuffled the predicted scores
over the amino acid residues before extracting the
patches and then checked the success rate. Repeat-
ing this procedure ten times gave, on average, a
prediction for 46.2 ^ 1.3 proteins (the number of
proteins for which a patch could be found). Out of
these, the interface was predicted successfully for
13.0 ^ 3.1 proteins (in the random model many
predictions resulted in multiple patches, only the
largest one was taken for the statistics).

The quality of the predictions is best appreciated
on the structure of the relevant proteins. Four
examples of the prediction outcome are shown on
the relevant protein structures in Figure 11. From
the Figure, one clearly sees that not all the interface
was predicted, but that the predicted part fits the
interface well. This is a result of the method used,
which optimizes precision, rather than coverage of
the whole interface. In Figure 11(d) we colored the
protein also according to the full score range, from
blue (low) to red (high). Doing so increases the
size of the predicted interface, however, it may, in
some cases be more confusing to the viewer. In
the web version of ProMate we supply both the
patch results as given in Figure 11(a)–(c) and the
full scale score shown in Figure 11(d).

Using the probabilities extracted from the
unbound DB, the predictor was run (using the
same score combination as for the unbound DB)
on the 35 proteins of the disjoint bound DB. For 20
proteins, a successful prediction was found, for
three proteins, no interface was detected, and the
rest failed. Taking the best patch (instead of the
largest one) increases the success rate to 24 out of
32. The results for this DB are summarized in
Table 2. The disjoint bound DB was not used
during any stage of data extraction or optimiz-
ation. Thus, the importance of this test is to show
that the same rate of success is obtained in general,
and is not a result of over-fitting the data. One
might argue that this set contains bound proteins,
and thus it is not an adequate test. Since this is
only one of the proofs for the validity of ProMate,
and since the differences between the bound and
unbound DB were found to be minor for all the
properties used in the optimized scores combi-
nation, we consider this set as a valid test.

Discussion

We initiated this project because we suspected

that binding sites have some specific properties,
which distinguish them from the rest of the
protein’s surface. Therefore, by identifying these
properties, it may be possible to design an algor-
ithm that is able to find these locations on the
unbound proteome. The work focuses entirely on
transient hetero-complexes, which are stable and
functional, both in the unbound and bound forms.
It was shown that the interface composition of the
latter is significantly different from that found for
permanent homo and hetero-complexes, which
constitute the ternary structure of a protein. Anti-
bodies were excluded entirely, because of their
specific binding mode optimized through rapid
evolution.

Starting from a well-defined problem

Two parts of this work, for which one would
expect to find a consensus in the field, turned out
to be rather inconsistent: how is an interface

Figure 11. Four predicted interfaces from the
unbound DB are drawn on the relevant protein
structures. For each protein the true interface (red ¼
interface, blue ¼ surface, green ¼ internal) is given on
the left. The rightmost presents the predicted interface
patch (in red). (a) 1ex3A, (b) 1ajw, (c) for 3ssi two inter-
face patches were predicted. While the structure of the
complex contains only one partner, mutagenesis studies
have confirmed the second interface as well. (d) For
1avu, two patches were predicted, the larger one fits the
experimentally determined. Here, we also added a third
picture showing the full score given by ProMate before
the circle-clustering step. The size of the predicted
interface growth is considerable.
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defined, and how to gauge its successful predic-
tion. In simple words, what exactly are we looking
for? Two common interface definitions are
presently accepted. The first is based on the
distance between the monomers in the complex.
Examples can be found in the work by Zhou &
Shan,17 where a 5 Å distance between hetero-
atoms was used, or in the work by Fariselli et al.,15

which used a 12 Å distance between Ca atoms.
The second class of definitions is based on the
change in the solvent-accessible surface upon
complexation.4,19 Both definitions are very similar
in practice, and seem to suffer from the same bias.
They mark a non-consecutive region of the pro-
tein’s surface as interface. Some concave regions
are not considered an interface even when they
are buried within the interface. In Figure 12(a)
(left), the surface of ribonuclease inhibitor (2bnh-)
is colored using the ASA definition. The “holes”
in the interface are seen clearly. On the right, the
interface of the same protein is colored using a

heuristic procedure to fill up the holes in the inter-
face (see Methods). This result is a continuous
interface definition. Indeed, any protein surface
consists of protruding and indenting areas (see
Figure 12(b)). We were intrigued to see whether
the amino acid composition between the holes and
the knobs on the protein surface are identical, and
found that this is not the case. The graph presented
in Figure 12(c) shows that the amino acid residues
can be divided into four groups. The hydrophobic
amino acid residues (Val, Cys, Ile, Met, Leu) have
a monotonically decreasing preference for the
different regions as the extent of solvent exposure
increases. The hydrophilic amino acid residues
(Ser, Pro, Asp, Asn, Glu, Glu, Lys) show exactly
the opposite trend. The aromatic amino acids
seem to prefer holes on the surface of the protein,
where both the movements of the rings are facili-
tated, and their hydrophobic chain is protected
from the water. Glycine is somewhat different
from the rest, as it has a preference for the protein’s

Figure 12. Amino acid distribution in concave and protruding surface areas (knobs and holes). (a) The Figure (left) is
an example of an interface extracted for ribonuclease inhibitor (2bnh) using the simple ASA method (with Connolly’s
MS dots program). Interface atoms are colored in red, surface in blue and internal in green. Some non-interface
atoms that are surrounded by interface atoms and therefore are buried within the interface can be seen. In the Figure
(right), these atoms were added to the interface definition (see Methods). (b) Trypsin inhibitor (1avu) is colored accord-
ing to its knobs (in blue) and holes (in red). The white surface is considered intermediate region (0.2 , HI , 0.3) and
was not used to produce the graph in (c), which shows the amino acid distribution in protruding and concave surfaces
in comparison to surface and buried amino acid residues. The bars appear (from left to right) in order of decreasing
solvent exposure. Hydrophobic and hydrophilic amino acid residues seem to have a consistent trend with respect to
their exposure. Aromatic amino acid residues prefer holes on the surface and glycine is more frequently seen either
in internal regions or in knobs on the protein’s surface.
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interior, but if on the surface it is mostly found in
knobs. Evaluating whether the amino acid distri-
bution between knobs and holes is different for
interfaces versus the rest of the surface did not result
in a clear conclusion, as the data were too noisy.

Properties of binding surfaces

The analysis of the unbound and bound DBs was
done in a quantitative, comparative way. Obviously,
an interface prediction program should identify
the location of the interface on the unbound struc-
ture. Therefore, we performed all of our analysis
on the unbound protein DB. This gave us the
opportunity to compare these results with an
analysis of the same proteins in their bound form.
Despite the structural changes accompanying com-
plexation, all the interface characteristics examined
were found to be similar for the bound and
unbound DBs. These include the chemical compo-
sition, a lower B-factor, a higher water content and
structural preferences (preference for b-strands
and NR2St). Failing to find differences between
the two DBs may be attributed to the method
used for data collection. The summation of proper-
ties over 10 Å circles gives a low-resolution picture
of the binding sites, one that seems to be constant
for the bound and unbound forms.

The emerging picture of the structural–chemical
character of a binding site can be summarized as
follows: the binding site is stretched over multiple
amino acid chains in two dimensions (b-sheets
and longer NR2St), and less on a-helices or short
consecutive stretches of amino acid residues. The
strong preference for b-sheets may be explained by
their ability to form densely packed structures when
placed one against the other, thus having a higher
potential for intermolecular bonds formation.

Chemically, the amino acid propensities were
similar to those reported previously. The distri-
bution of pairs of amino acid residues follows
mostly the single distribution pattern, except for
hydrophobic and polar pairs, which are more
abundant. While the hydrophobic content of inter-
faces is similar to that of non-interface regions,
hydrophobic residues tend to form larger clusters.
Together, these data show that interfaces are
characterized by clustering effects of polar and
hydrophobic residues into patches, but not by a
higher hydrophobic or polar content. Using
crystallographic data, we learned that the B-factor
of residues located in the binding surface is lower
and that the water content is higher already in the
unbound state of the protein. This might be an
expression of a preference for crystal contact for-
mation at interfacial regions, or a clever way for
long-range advertisement of the location of the
binding site (in addition to electrostatic steering).
If so, this may help proteins to “feel” each other
while in the encounter complex before short-range
interactions are formed. This would result in
acceleration of the association process.

The emerging picture is logical from both a

structural and a chemical point of view. The
secondary structure preferences indicate a priority
for less rigid structures, which are more tolerant
to adjust themselves toward a second protein, and
are able to form close contacts across the interface.
The tendency to form hydrophobic (and possibly
polar) clusters exemplifies the importance of
cooperativity between different groups on the
same protein to achieve tight binding. Binding of
two proteins is not achieved through a simple col-
lection of many discrete adjacent bonds, but rather,
a more complex network of interactions, webbed
together to form a cooperative binding interface.

ProMate

How well does our prediction program perform?
It is obvious that we do not succeed in all cases, but
the large diversity of protein–protein interactions
makes this task extremely difficult. Not all proteins
use the same solutions for binding, and we
obviously succeed in predicting only part of them.
Still, the success rate is 70% (of interfaces for
which ProMate made a prediction), with a success
being defined rather stringently, as at least half of
the predicted interface residues being indeed in
the interface. Figure 11 shows that in those (and
many other cases that are not shown) the predicted
interface is actually located at the center of the real
interface. This is not that surprising, taking into
account the data acquisition method, which defines
interface circles only as those that are over 70%
interface, leaving much of the boundary outside
the interface (boundary circles were discarded at
the data acquisition state). Moreover, at the second
step, ProMate uses only the top 10% of the scores,
provided their score is over 0.7. Thus, both during
data acquisition and during prediction, the center
of the interface is preferred. Consciously, we prefer
precision to sensitivity in predicting the location of
the interface. An excellent test of the power of
ProMate was the prediction of the location of inter-
faces in the disjoint DB. These proteins were not
used at the data acquisition step, yet interface
prediction worked nearly as well as for the
unbound DB. This also shows that indeed the
predictor is not sensitive to small changes during
complexation. No significant differences were
found between the predictions using NMR or
crystal structures.

According to our results, four proteins from the
unbound DB were predicted to have an additional
binding region that does not appear in our DB of
bound proteins (Table 1). With many proteins
having multiple binding partners, one cannot
exclude the validity of this prediction. A good
example of such a protein is Streptomyces subtilisin
inhibitor (3ssi, Table 1, Figure 11). This protein
interacts with subtilisin BPN (PDB 2sic).25 However,
a second mode of interaction was reported with the
zinc metalloproteinase ScNP.26 Here, binding was
suggested to occur at the opposite end of the
inhibitor, fitting the second predicted binding site
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(Table 1). Whether other additional binding sites pre-
dicted by ProMate are real is yet to be determined.

The bottom line

The emerging picture has far-reaching conse-
quences in the way proteins bind. First, it would
help explain the fast rate of protein–protein inter-
actions, as potential binding sites are already
probed during partially solvated intermediates
formed en route to association.27 If much of a pro-
tein’s surface does not support binding, the search
for specific interactions is reduced. A restricted
binding surface would also suggest a way to
answer the specificity paradigm. The first step in
all protein–protein docking algorithms is to search
for all possible bi-molecular conformations leading
to a reasonable interface (in terms of shape compli-
mentarity). Interestingly, many such potential
conformations are found, albeit only one of them
is correct. Reducing the available space for
binding would actually filter out most wrong con-
formations. This is the basis of a new docking
algorithm developed by us, which is performing
surprisingly well.28

Future work

The web version of ProMate† enables to remove
any currently used scores, and to add in external
information. New properties that carry information
regarding the interface location are bound to come
up. Other properties might be within the expertise
of other laboratories. Joining up as much infor-
mation and experience as possible can significantly
improve the interface prediction ability, which we
believe would make a significant advance in the
field of structural bioinformatics, and of docking
in particular.

In the final ProMate version, we fixed the score
combination to predict all interfaces, according to
the overall best score as identified during the
optimization step. However, we saw that different
combinations fit better some individual cases. The
goal here would be to identify a priori which com-
bination to use for which case. Obviously, this
would improve the predictive power of the
program. As the dataset of protein complexes is
currently very limited, this may be difficult to do
before many more structures are determined.

Methods

Database construction

A DB of 67 structures of transient protein–protein
heterodimers was derived from the PDB,29 with at least
one of the monomers being longer than 85 AA and both
being longer than 50 AA. Antibodies were not included

in the DB, since their evolutionary process is significantly
more rapid than that of other proteins.

From this DB we derived a DB of 92 bound monomers
that are longer than 85 AA. The minimum BLAST
p-values between these monomers is 1 £ 1024. A struc-
tural alignment was executed for each possible pair of
monomers using the combinatorial extension method
(CE).30 For each pair that got a Z-score above 5, one of
the proteins in the pair was removed from the DB. If the
score was above 4, the complexes were aligned, and
both were kept in the DB only if the interface
location on the common monomer was different. The
highest sequence identities according to the CE were
19.3%.

A DB of unbound structures was then derived from
the bound DB. Using BLAST,31 57 of the monomers
were found to have a highly homologous unbound
form in the PDB, with more than 70% sequence identity.

Here, we perform a comparative analysis of two DBs:
a bound DB containing 92 different monomers which
structures have been determined in the bound form of
the proteins, and an unbound DB containing 57 struc-
tures homologues to 57 of the bound monomers but
solved in their unbound form. Most of the bound (87)
and unbound (47) proteins were determined using
X-ray crystallography and five bound and ten unbound
were solved using NMR. Each amino acid on an
unbound monomer was associated with an amino acid
on the relevant bound monomer according to the
BLAST’s sequence alignment.

Surface analysis

The surface atoms of each monomer were extracted
using Connolly’s molecular surface dots program with a
probe radius of 1.4 Å, and dot density of 1 dot/Å2. Only
the surface atoms were used throughout the analysis.
For the statistical analysis of binding versus non-binding
surfaces, the proteins surface was sampled using circles
with a radius of 10 Å around anchoring dots, which are
uniformly distributed over the monomer’s surface
(0.1 dot/Å2). When examining the properties, each circle
was given a score representing the level of the property
within the circle. The surface examination code is using
the EGAMBþþfunctions library.‡

Interface definition

To extract the interface, we used a three-step calcu-
lation. First, all residues with atoms that are buried
upon complexation were marked on the bound mono-
mer using Connolly’s molecular dot surface (MS) pro-
gram. For the unbound proteins, these amino acid
residues were projected onto the bound protein using
the BLAST alignment. This definition leaves certain
atoms unmarked, though they are surrounded by
marked atoms and are located in the interface. We call
these atoms “holes” in the description of the method.
A heuristic procedure was used to find these holes and
add them to the list of interface atoms. This procedure
is executed for both bound and for unbound proteins.
Finally, each circle was assigned a CII value, which is
the fraction of interface atoms it possesses.

The “hole-removing” procedure looks at all triangles

† http://bip.weizmann.ac.il/promate
‡ gamba.math.tau.ac.il/group/GAMBþþ/GAMB.
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formed by any triplet of atoms that were found to be
interface in the first stage (by the MS program). For
each triangle, the algorithm projects all the atoms that
are within a 15 Å distance from all the triangle’s vertices
to the triangle’s plane. If the atom’s projection falls inside
the triangle, then the atom’s score is increased. Finally,
all the atoms with scores higher than the mean score are
added to the interface atoms’ list. The side effect of this
procedure is that for non-convex interfaces the algorithm
might add some of the atoms that lie on the margin of
the interface. A pseudo code for the CII calculations is
given as Supplementary Material.

Using the CII value we divide the protein’s surface
into three areas:

Interface ¼ {dots with CII . 0.7}
Non-Interface ¼ {dots with CII ¼ ¼ 0}
Boundary ¼ otherwise

Only the first two were used for gathering statistics.
Using this definition, the interface region occupies

about 16% of the total surface (8383 SD), the non-
interface is ,48% of the surface (25,672 SD) and the
boundary is ,36% (19,314 SD).

Statistical significance

Error bars for categorical scores

The error bars are the 70% confidence intervals as they
were estimated by the bootstrap resampling method
using 1000 bootstrap samples.32 In the graphs, categories
where the error bars do not overlap appear in capital
letters.

p-Value for continuous scores

Two statistical tests prove the significance of the result
for continuous scores. First is by using the Kolmogorov–
Smirnov test on the interface versus non-interface
samples. The second test is a test for the mean, since,
contrary to the distribution itself, this measure is
expected to be distributed normally. A thousand samples
of the length of the interface sample were randomly
selected from the non-interface sample. The mean of
these samples is normally distributed. The p-value is
then estimated from the normal distribution using the
mean and standard deviation values of these 1000
samples. These methods provides only a rough esti-
mation of the random probability, since the random
model here does not take into account the continuity of
the interface. A more correct, but complicated model
would need to use randomly generated interfaces.
A possible way to produce such random interfaces is
from false docking results of the monomers.

Knobs and holes

To measure the extent to which a surface dot is located
inside a hole (concave area) on the protein surface we
used a simplified version of the solid angle method

suggested by Connolly.33 The hole-index (HI) of a surface
dot is the fraction of a 10 Å radius ball around this dot
that is occupied by the protein. Thus, the possible HI
values are in the range of (0,1), whereby a hole would

have HI closer to 1. A knob was defined by having
HI # 0.2 and a hole has HI $ 0.3 (see Figure 12(b)).

ProMate: the interface predictor

The prediction process is constructed of three
independent stages. First, the training set proteins are
analyzed to produce the interface and surface histo-
grams relevant to each property. Second, these data are
used to estimate the interface probability of each circle
of a test protein. Finally, neighboring circles, that were
predicted to be interface, are grouped together into pre-
dicted interface patches. Each of the stages is explained
in detail below.

Training (preprocessing): probability extraction

This stage only uses the interface and non-interface
circles, ignoring the boundary ones. For categorical
scores the probability of a certain category is simply its
frequency of appearing in the interface and in the non-
interface region of the training set. The histograms for
continuous scores were constructed from the data, start-
ing with a bin around each single sample, and merging
bins closer than 0.005. Then, the bins were clustered
using a greedy algorithm in order to reduce the noise.
At each clustering iteration, two bins were merged into
one using the following rules. First, the mutual infor-
mation (MI) of the joint distribution of the examined
property and the interface (a binary property having the
value true for interface circles and false for non-interface
ones) was calculated for each possible merge of two bins.
Each such merge reduces the MI until at the extreme
there is only one bin containing all the samples, which
necessarily holds no information distinguishing the
circles. At each iteration, the bins whose merge would
least reduce the MI are chosen and merged. Of course,
the algorithm does not go all the way to the extreme of
a single cluster. Instead it stops when the decline in MI
in a single step is higher than 5% of the original MI
value. For categorical scores every two bins are
examined, whereas for continuous scores only the
merge of consecutive bins is considered.

Scoring a test protein

A test protein is initially processed as an independent
set of circles. For every circle, each of the properties is
examined and the likelihood of this circle to belong to
the interface according to it is determined. All properties
are divided into two classes: simple properties are those
that produce a single value per circle, for example, the
water score which is the (normalized) number of water
molecules within a circle. For such properties the score
is the observed frequency of the specific score in the
interface of the training set divided by its sum of
observed frequencies in the interface and non-interface.
In other words, denoting interface by I and surface by S,
when O refers to the observed frequency in the training
set, for an input circle c:

Effectively, this score is equivalent to the sum-of-log-like-
lihood scoring method ðx ¼ SlogðS=IÞÞ; transformed by
1/(1 þ ex) to produce a value in the range [0,1].

However, using this for categorical properties results

Estimated Prðc [ Ilproperty ValðcÞ ¼ vÞ ¼
Oðproperty ValðcÞ ¼ vlc [ IÞ

Oðproperty ValðcÞ ¼ vlc [ IÞ þ Oðproperty ValðcÞ ¼ vlc [ SÞ
ð1Þ
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in many values per circle. For example, examining a
single circle’s sample of the (multinomial) amino acid
distribution results in a 20 entries vector containing
natural numbers. To produce a similar single score per
circle the amino acid residues (or in general, the dots in
the circle) were regarded as independent. Thus, each
dot is given a score according to equation (1), and the
circle’s score is the product of all the dots’ scores in it.
To correct for the dots independency assumption, the
final scores are normalized according to the actual distri-
butions of these scores in the training DB. For example, if
40% of the interface circles of the training set got a score
of 1, but at the same time 20% of the non-interface circle
got the same score, then the score 1 would be shifted to
0.4/(0.4 þ 0.2) ¼ 0.67.

The explanation so far treats all the circles as equally
likely to be interface or non-interface. There appears to
be some increase in the fraction of protein’s surface that
is occupied by the interface as the protein gets longer.
Therefore, each circle is also multiplied by the a priori
probability of being an interface for a protein of that
size. Then, for rescaling of the range of probabilities, it
is multiplied by 1 2 (“one minus”) the average interface
fraction over all proteins, which is 16% (in surface dots,
not including boundary).

As for multinomial properties, the combined score is
the product of all the scores resulted from the different
properties. Here, this combined score is corrected
according to the actual frequencies as they appear in the
training set.

Considering neighboring circles

To further smooth the score of each dot the environ-
ment in which it resides is taken into consideration.
After all the dots were assigned their scores, the score of
each dot is again combined with the scores of all the
adjacent dots in a 7 Å circle around it. This procedure is
repeated for a small number of iterations.

Nevertheless, simply adding in the neighbors’ scores
is problematic, since the method presented assumes that
there are no dependencies between the scores, whereas
neighboring circles share up to 80% of their area, and
thus their scores are highly positively dependent.
Through the dependencies, the same information is
being used more than once and by this the final scores
become more extreme than they should be. This time,
the dependency cannot be reduced by a simple
normalization.

To reduce this effect, each term in the score is raised to
the power of d [ (0,1). Note, that this is only beneficial,
since the dependency between the circles here is not
stochastic, but a positive one. Due to the overlap
between the circles, neighboring circles are expected to
give similar scores, thus taking some root of the product
would get us back to an averaged version of the original
values. The score thus becomes:

Explicitly, to the original score of the circle we add infor-
mation from its environment, but since most of this
information was already used in Sc(c), and since there is

repetition of information between the neighbors them-
selves, the environment’s effect is given a smaller weight
by taking a small value for d ¼ 0.01.

Clustering circles into predicted interface patches

The clustering step is calculated at the level of the
amino acid residues. The score of each amino acid is an
extrapolation of the scores of the neighboring dots to
the location of its Ca. Interface amino acid residues are
considered to be those with the 10% of the highest scores,
but only if the score is above 0.7. If no amino acid residue
fits this description, no interface is considered to have
been found. In a second step, all these amino acid resi-
dues serve as graph nodes. An undirected edge is
defined between two nodes, whose Ca are less than
13 Å apart. All the strongly connected components of
this graph are identified, and components containing
more than two nodes are considered as predicted inter-
face patches. For the evaluation of the results only the
biggest patch was considered (see Figure 11).
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