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We have developed a computer algorithm, FOLDEF (for FOLD-X energy
function), to provide a fast and quantitative estimation of the importance
of the interactions contributing to the stability of proteins and protein
complexes. The predictive power of FOLDEF was tested on a very large
set of point mutants (1088 mutants) spanning most of the structural
environments found in proteins. FOLDEF uses a full atomic description
of the structure of the proteins. The different energy terms taken into
account in FOLDEF have been weighted using empirical data obtained
from protein engineering experiments. First, we considered a training
database of 339 mutants in nine different proteins and optimised the set
of parameters and weighting factors that best accounted for the changes
in stability of the mutants. The predictive power of the method was then
tested using a blind test mutant database of 667 mutants, as well as a data-
base of 82 protein–protein complex mutants. The global correlation
obtained for 95 % of the entire mutant database (1030 mutants) is 0.83
with a standard deviation of 0.81 kcal mol21 and a slope of 0.76. The
present energy function uses a minimum of computational resources and
can therefore easily be used in protein design algorithms, and in the field
of protein structure and folding pathways prediction where one requires
a fast and accurate energy function. FOLDEF is available via a web-inter-
face at http://fold-x.embl-heidelberg.de
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Introduction

The translation of structural data into energetic
parameters is one of the long-term goals of protein
structure analysis. Moreover, there is a need for
accurate and fast algorithms for protein energy
calculations, in particular for the development of
algorithms with complex search procedures and
numerous combinatorial calculations. Typical
examples of such algorithms are protein design
and protein docking algorithms1,2 and protein
structure prediction methods.3 Recently, the possi-
bility of predicting protein folding pathways from
their folded structure prompted an interest in

obtaining fast and reliable energy calculations
from a static protein structure.4 – 7

The development of a fast and reliable protein
force-field is a complex task, given the delicate
balance between the different energy terms that
contribute to protein stability.8,9 Many different
force-fields have been constructed for predicting
protein stability changes. These range from force-
fields based on pure statistical analysis of struc-
tural sequence preferences,10 – 14 and force-fields
based on multiple sequence alignments,15 – 17 to
detailed molecular dynamics force-fields.18,19

These force-fields can be divided into three
major categories: (i) those using a physical effective
energy function (PEEF); (ii) those based on statis-
tical potentials for which energies are derived
from the frequency of residue or atom contacts
in the protein database (SEEF) as reviewed by
Lazaridis & Karplus;3 and (iii) those using empiri-
cal data obtained form experiments ran on proteins
(EEEF).
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The main drawbacks of the PEEF potentials are
that they are computationally very expensive and
they can therefore be used only on small sets of
protein mutants. The computation time can be
reduced somewhat by using implicit terms for
solvation energies and side-chain entropies, but
the time required to get a reliable estimate of a
free energy difference between a wild-type and
mutant protein is still significant.20

The power of SEEFs is that they contain terms
that account for complex effects that are difficult
to describe separately, and they contain empirical
approximations for the denatured state. A draw-
back of this approach is that once an SEEF poten-
tial has been constructed, improvements cannot be
added easily without introducing overlaps in the
underlying energies.

EEEF approaches combine a physical description
of the interactions with lessons learned from
experiments. Good examples of such algorithms
are the helix/coil transition algorithm AGADIR21,22

or the SPMP method.23 The AGADIR algorithm is
accurate at predicting the helical content of pep-
tides in solution and has been used to design
mutations that increase the thermostability of a
protein through local interactions.24 – 26 A limitation
of this algorithm is that it can be applied only to
a-helices and cannot take tertiary interactions into
account.

Here, we have developed an energy function
based on the EEEF approach using a strategy
similar to that used for the development of
AGADIR. We have taken advantage of the large
amount of experimental work that has been
devoted to understanding protein energetics. In
particular, we have relied on the body of data that
probed, through single and multiple-residue
mutation analysis, the roles of particular inter-
actions that contribute to protein stability.27,28 We
followed a two-step procedure. First, we con-
sidered a training database of 339 mutants in nine
different proteins and optimised the set of para-
meters and weighting factors that best accounted
for the changes in stability of the mutants. The
predictive power of the method was then tested
using a blind test mutant database of 667 mutants,
as well as a database of 82 protein–protein com-
plex mutants.

Considering the training and the blind test data-
base together, the algorithm was tested over 1088
mutants. In this entire database, most of the
important interactions that govern protein stability
are represented in the protein mutant database.
All types of secondary structures are represented
substantially (turn, 17%; alpha and 310-helix, 30%;
b-sheet, 32%; coil, 21%). There is a similar number
of mutations that involve only hydrophobic
residues and mutations that involve deletions or
substitution of polar atoms (47% and 53%, respec-
tively). Finally, the percentages of mutated residues
having a solvent-accessibility higher or lower than
30% are similar, 45% and 55% of the mutant data-
base, respectively. The global correlation obtained

for 95% of the entire mutant database is 0.83 with
a standard deviation of 0.81 kcal mol21 ð1 cal ¼
4:184 JÞ and a slope of 0.76. The present energy
function FOLDEF (FOLD-X energy function, in the
following) uses a minimum of computational
resources and can therefore be used easily in pro-
tein design algorithms where one requires a fast
and accurate energy function.

Results

Energy terms in the FOLD-X energy function

The FOLD-X energy function (FOLDEF) includes
terms that have been found to be important for
protein stability. The free energy of unfolding (DG)
of a target protein is calculated using equation (1):

DG ¼ WvdwDGvdw þ WsolvHDGsolvH þ WsolvPDGsolvP

þ DGwb þ DGhbond þ DGel þ WmcTDSmc

þ WscTDSsc ð1Þ

where DGvdw is the sum of the van der Waals con-
tributions of all atoms. DGsolvH and DGsolvP is the
difference in solvation energy for apolar and polar
groups, respectively, when going from the
unfolded to the folded state. DGhbond is the free
energy difference between the formation of an
intra-molecular hydrogen-bond compared to inter-
molecular hydrogen-bond formation (with sol-
vent). DGwb is the extra stabilising free energy
provided by a water molecule making more than
one hydrogen-bond to the protein (water bridges)
that cannot be taken into account with non-explicit
solvent approximations.29 – 31 DGel is the electrostatic
contribution of charged groups interactions. DSmc is
the entropy cost for fixing the backbone in the
folded state. This term is dependent on the intrin-
sic tendency of a particular amino acid to adopt
certain dihedral angles.32 Finally, DSsc is the
entropic cost of fixing a side-chain in a particular
conformation.33 The energy values of DGvdw,
DGsolvH, DGsolvP and DGhbond attributed to each
atom type have been derived from a set of experi-
mental data, and DSmc and DSsc have been taken
from theoretical estimates (see Materials and
Methods for details). The terms Wvdw, WsolvH, WsolvP,
Wmc and Wsc correspond to the weighting factors
applied to the raw energy terms. These weights
were obtained from an initial fitting procedure
over a database consisting of 339 single point
mutants (see Materials and Methods).

Effect of solvent exposure determined by the
atomic occupancy (Occ)

Many experimental studies show that inter-
actions at the surface of a protein usually contri-
bute less to the stability of a protein than those in
the core.34,35 This can be rationalised as an effect of
increased flexibility at the protein surface in an
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environment close to that of the unfolded state.
Therefore, an important part of the energy calcu-
lation is based on the inclusion of solvent effects
in an implicit manner, except in the special case of
water bridges. To estimate the solvent-accessibility
of a given atom, we used the solvent contact
model,36 which considers the volume occupied
by protein atoms around the atom, called the
occupancy (Occ). The occupancy of a given atom
i, Occ(i ), is the sum of the fragmental volumes
of the atoms surrounding this atom within a
threshold distance of 6 Å (see details in Materials
and Methods).36 – 38 This quantity was preferred to
the geometrical surface calculation used in the
traditional ASA calculation,39 since it is much faster
to calculate.37

In FOLDEF, the atomic free energy of solvation,
the van der Waals and the electrostatic interactions
together with the entropic terms are scaled with
respect to the atomic occupancies (Occ). As a first
approximation, we assume that the strength of an
interaction (solvation effects, van der Waals or
electrostatic) and the entropic cost for fixing the
conformation of a residue should vary linearly
with the atomic occupancy Occ(i ). For each atom
i, the unscaled energy terms are multiplied by the
scaling factor (Sfact(i )) that is calculated from the
atomic occupancy Occ(i ) as:

SfactðiÞ ¼
OccðiÞ2 OccminðtiÞ

OccmaxðtiÞ2 OccminðtiÞ

where Occmin(i ) and Occmax(i ) are the minimal and
maximal occupancies of an atom of type ti as esti-
mated by Holm & Sander37 (see Table 3 in the
Supplementary Material).

For the main-chain and side-chain entropy,
which are calculated at the residue level and not
at the atomic level, we consider the mean value of
the occupancies of the atoms that compose the
main chain and the side-chain, respectively.

Fitting of the weights in equation (1)

The weights applied to the different energy
terms in equation (1) were fitted using the experi-
mental DDG values of an initial mutant database
comprising 339 single-point mutants in nine
different proteins: barnase,34 CI-2,40 spectrin,41 Src
SH3,42 Sso7d,4 tenascin,43 FKBP,44 Ada2h45 and
CheY.46 The fitting procedure also involved the
estimation of the DGhbond values. The problems
related to the modelling of the mutated side-chain
were avoided by considering only mutations
involving the deletion of groups in the side-chain.
We assume that these mutations do not affect the
conformation of the protein drastically. Based on
the same assumption, we considered mutations
that involved the substitution of groups, such as
E ! Q, D ! N or T ! V and the reverse of these.

The various steps of the fitting procedure are
described in detail in Materials and Methods.
After several iterations, the set of weights that was
found to be optimal was Wvdw ¼ 0:2; WsolvH ¼ 1:4;
WsolvP ¼ 1:25; Wmc ¼ 1:0 and Wsc ¼ 0:75: The
optimal value for the formation of a hydrogen
bond, DGhbond, as found to be 21.3 kcal mol21 if
the hydrogen bond was formed between two
polar groups and 21.4 kcal mol21 if the hydrogen
bond was between a polar and a charged group.
The physical interpretation of these weights and
of their values is provided in Discussion.

Figure 1. Calculated DDGs com-
pared to the experimental DDGs for
the 339 mutants of the training
database. The continuous line
represents the linear regression
obtained with 95% of the training
database after the outliers (see
Results) were discarded. Its equa-
tion is y ¼ 0:24 þ 0:73x; with a
correlation factor of 0.8. The
mutants considered as outliers are
indicated as crosses and the other
mutants are shown as circles.
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Prediction of mutation free energy changes for
the training database

In Figure 1 we show the correlation between the
predicted and experimental data for the training
database. For the entire training database, we
obtain the following correlation parameters:
slope ¼ 0:67 and R ¼ 0:7: The standard deviation,
s, is 0.97 kcal mol21. There are 16 clear outliers
(5% of the database) for which DDG is wrong by
more than 2s (see Table 1). Removing these
mutants from the database improves the corre-
lation significantly: slope ¼ 0:73; R ¼ 0:8 and
standard deviation ¼ 0:75 kcal mol21: (The charac-
teristics of the 339 mutants of the training database
are provided in Table 1 of the Supplementary
Material, including the DDGexp and DDGcalc, the
accessibility and the secondary structure of the
mutated residue.)

Analysis of the outliers in the training database

In the following, we investigate whether the
deviations observed for the 16 outliers between
DDGexp and DDGcalc most likely originate from a
significant change in the mutant structure or from
a systematic error of the energy function. For the
majority of the outliers, there is a straightforward
explanation of the observed discrepancies, related
to putative conformational changes upon mutation
(Table 1). In ten of the outliers, a large hydrophobic
side-chain is deleted, and it seems that FOLDEF
overestimates the destabilising effect in these cases
(mean error of 2.9 kcal mol21). However, many
other hydrophobic mutants were predicted cor-
rectly (154 with R ¼ 0:77; s ¼ 0:78 kcal mol21 and
mean error of 0.02 kcal mol21), which shows that
the errors are not coming from a general over-
estimation of the hydrophobic effect. Instead, the
discrepancies between DDGexp and DDGcalc for the
ten outliers are most likely due to the relaxation of

the structure that reduces the cavity formed by the
removal of the side-chain (this is mainly the case
for the seven mutants in src SH3 (1FMK)). For
instance, it has been shown recently that the
single-point mutation F32A in Sso7d,47 detected
as an outlier, involves a hydrophobic core
rearrangement.35,48

Two outliers are mutants involving polar inter-
actions that are found to be more stable in the
experiments than in the calculations (D57A in
CheY and N58D in barnase). The residue D57 is
located in the active site of the CheY protein
flanked by two negatively charged residues (D12,
D13). FOLDEF predicts that the D57A mutation is
stabilising, although the amplitude of the effect is
underestimated. This can be explained easily by
the fact that K109, which makes a salt-bridge with
D57, can switch and make a salt-bridge with D12
(as seen in another structure of CheY with PDB
code 1CHN). Thus the mutation of D57 will not
result in the loss of a salt-bridge interaction, and
the stabilising effect of the mutation should be
larger than calculated. Concerning N58D, we find
that the mutated D58 is unable to form a favour-
able interaction that N58 was making with the car-
boxyl group of L63 in an exposed turn. Structural
rearrangements that we do not model are likely to
compensate for the loss of this interaction. Lastly,
three outliers involving polar group deletion or
substitution (V54T in CheY, D71A in CI-2, D54A in
barnase) have large destabilising effects on the
protein (over 3 kcal mol21), and these are under-
estimated by FOLDEF. In the V54T mutant, a
polar atom is introduced into the core of the pro-
tein with no hydrogen bond partner. The dis-
crepancy between experimental and calculated
values for this mutation may reflect an underesti-
mation of the solvation penalty associated with
the burial of polar atoms. However, considering
the entire mutant database, there are 14 other Val
to Thr mutations with a solvent-accessibility

Table 1. Analysis of the outliers in the training database

PDB Mut
ASA

(%Acc) DSSP
DDGexp

(kcal mol21)
DDGcalc

(kcal mol21) Possible origin of the discrepancy

1A2P D54A 22.4 S 2.97 0.6 No interpretation
1A2P N58D 19.4 C 20.47 1.91 Type I turn pos. i. No interpretation
1BF4 V23A 1.1 S 0.23 2.66 Large hydrophobic buried; possible structural relaxation
1BF4 F32A 0.4 S 2.70 5.11 Large hydrophobic buried; core rearrangement47

2CHF V54T 0.0 S 4.80 1.79 Insertion of a fully buried polar atoms with no H-bond;
underestimated

2CHF D57A 5.9 S 23.40 20.51 Residue in the active site involved in strong repulsive
interactions

1YPC D71A 37.3 C 3.41 0.74 Type I turn pos. i. No interpretation
1YPC P52A 57.1 S 0.17 2.34 No interpretation
1FMK F10A 1.8 S 0.84 5.00 Large hydrophobic buried; possible structural relaxation
1FMK F26A 5.3 C 1.97 5.52 Large hydrophobic buried; possible structural relaxation
1FMK I34A 1.2 C 0.32 3.69 Large hydrophobic buried; possible structural relaxation
1FMK W43A 13.0 S 1.20 3.90 Large hydrophobic buried; possible structural relaxation
1FMK I56A 0.0 S 1.84 3.93 Large hydrophobic buried; possible structural relaxation
1FMK P57A 6.1 S 1.36 4.52 Large hydrophobic buried; possible structural relaxation
1FMK Y60A 24.7 3 20.23 3.19 Large hydrophobic buried; possible structural relaxation
1FKB I91A 5.5 C 1.54 3.87 Large hydrophobic buried; possible structural relaxation
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below 5%. The mean experimental destabilisation
effect DDGexp of these mutations is 2.46 kcal mol21

and FOLDEF underestimates this effect by, on
average, 0.65 kcal mol21. These values are far from
the corresponding values for V54T, DDGexp of
4.8 kcal mol21 and error of 3 kcal mol21. This
means that the underestimation of the solvation
penalty associated with the burial of polar atoms
cannot account for the observed discrepancy.
For the two last outliers D71A and D54A, close
examination of the wild-type (WT) structures does
not provide any clues about the reason for the
large destabilisation observed for these mutations.

Blind test of FOLDEF on single point mutations

Equation (1) describes the relationships between
DG and the different energy terms taken into
account in FOLDEF. It contains several adjustable
parameters and weights that govern the relative
contribution of these energy terms in the calcu-
lation of the protein stability. In the previous
section, we used an initial training database of 339
mutants to obtain a set of optimal weights that
best fitted the experimental DDG. Since the para-
meters and weights of FOLDEF were fitted on a
particular database, several blind tests were made
to check the absence of bias towards the training
mutant database. A first blind test was carried out
on a new mutant database containing 625 experi-
mental DDG values measured for 27 proteins. As
in the previous calculation, only mutants involving
deletions or substitutions were considered. These
data were recovered from the ProTherm data-
base,28 from the set of mutations characterised on
the human lysozyme23 and from protein G and

protein L mutation studies.49,50 Results similar to
those obtained with the initial training database
were produced with this blind test. The slope
of the correlation is 0.64 and the correlation
coefficient is 0.73 with a standard deviation of
1.02 kcal mol21. As in the previous case, less than
5% of the data were outliers (more than 2s dif-
ference between calculated and experimental
values). Removal of the outliers (34 mutants)
improved the prediction: slope ¼ 0:73; R ¼ 0:80
and standard deviation ¼ 0:84 kcal mol21 (Figure
2). The results obtained with the blind test data-
base prove that no significant bias was introduced
from the fitting of the weights and parameters to
the training database. It shows also that the size of
the training database was sufficient to contain
examples of most of the interactions that play a
role in protein thermodynamics. (Details related
to the properties of the mutants of the blind test
are provided in Table 2 of the Supplementary
Material.)

Analysis of the outliers in the blind
test database

For the blind test database, we have checked
which factors may explain the discrepancies
observed for the outliers (Table 2). It is worth
noticing that the majority of the outliers are
staphyloccocal nuclease mutants (SNase, PDB
code 1STN). An extensive analysis of the thermo-
dynamic properties of the mutants of this protein
has been carried out in Shortle’s group over the
past ten years.51 – 53 Many mutants showed large
variations in the mGuHCl value and this has been
associated with changes in the properties of the

Figure 2. Calculated DDGs com-
pared to the experimental DDGs for
the 625 mutants of the blind test
database. The continuous line
represents the linear regression
obtained with 95% of the training
database after the outliers (see
Results) were discarded. Its
equation is y ¼ 0:25 þ 0:74x; with a
correlation factor of 0.8. The
mutants considered as outliers are
indicated as crosses and the other
mutants are shown as circles.

Prediction of Changes in Protein Stability 373



denatured state. Direct evidence of the native like
properties of the denatured state of SNase, even in
8 M urea, was reported recently.54 The variations
of mGuHCl values, from 10 to 36% of the WT value,
for 13 outliers of SNase, suggest that the effect of
the mutations on the properties of the denatured
state is responsible for the large discrepancy
between DDGexp and DDGcalc. Although such pro-
nounced mutant effects are specific to the SNase
protein, they have been observed in other
proteins.55 Yet, no systematic underestimation of
the DDGexp could be observed for the other proteins
tested. Overall, among the 34 outliers identified, a
likely explanation for the discrepancy can be pro-
posed for 27 mutants (79%) (Table 2). Large dis-
crepancies may arise either from structural
relaxation as observed directly in some mutant
structures (L99G in 2LZM or T43V in 1REX), from
large variations in the mGuHCl values (11 cases),
from the existence of contacts with ligand (H93G
in 1BVC) and, finally, through crystal packing
effects (K97G in 1IOB) (Table 2).

Prediction of stabilising mutations

In the training database and in the blind test
databases, most of the mutations are destabilising.
To verify that FOLDEF parameters are suitable to
estimate the effect of stabilising mutations, we con-
sidered a set of 42 mutants of the T4 lysozyme
(X ! A or G) whose structures have been solved
by X-ray studies.35 The correlation between DDGexp

and DDGcalc for these mutants is quite high, with a
slope of 0.87, a correlation coefficient of R ¼ 0:83;
standard deviation ¼ 0:89 kcal mol21 (Figure 3).
On the basis of the mutant structures, we modelled
the reverse mutations (A or G ! X) using the
WHAT IF program56 (see Materials and Methods)
and calculated DDG for the reverse mutation. We
get a very good correlation, with a slope of 0.92,
a correlation coefficient of 0.81 and a standard
deviation of 0.98 kcal mol21 (Figure 3). All together,
the 84 destabilising and stabilising mutations made
on the phage T4 lysozyme are predicted with a
correlation of 0.89 and a slope of 0.86; standard

Table 2. Analysis of the outliers in the blind test mutant database

PDB Mut
ASA

(%Acc) DSSP
DDGexp

(kcal mol21)
DDGcalc

(kcal mol21) Possible origin of the discrepancy

1BPI F22A 13.1 S 2.00 4.38 Large hydrophobic buried; possible structural relaxation
1BPI N44A 14.1 C 3.30 0.47 No interpretation for such a large DDGexp

1BPI R1A 55.3 C 0.5 2.75 Residue at the N terminus. Probably very mobile in solution. The
strength of the interactions observed in the structure should be

reduced
1BVC H93G 21.4 H 0.01 2.53 In contact with the ligand in the WT structure. Conformation of H93

in WT misleading
1DYJ V75A 6.8 S 20.10 2.1 Large hydrophobic buried; possible structural relaxation
1HFZ Y103A 19.7 3 2.39 4.69 Large hydrophobic buried; possible structural relaxation
1HGU S71A 28.3 C 0.97 3.92 N-cap of a helix. Origin of the discrepancy unknown
1IOB K97G 44.5 3 1.20 22.98 (NH3þ) group pointing into the protein interior. Well predicted using

another structure: DDGcalc ¼ 1:27 kcal mol21 using 2I1B
1QHE F7L 0.3 S 0.04 2.26 Large hydrophobic buried. Possible structural relaxation
1STN D83A 24.5 C 3.80 1.37 Slight variation of m ðm ¼ 0:89Þ: Possible additional problem
1STN F76G 9.3 S 4.70 2.45 No significant variation of m ðm ¼ 1:05Þ: Unknown reason
1STN I72A 8.5 S 5.10 2.70 Mutation affects greatly the unfolded state. m ¼ 1:29
1STN L108A 5.5 T 5.80 2.72 Mutation affects greatly the unfolded state. m ¼ 0:77
1STN L137G 29.6 C 4.60 2.14 Mutation affects greatly the unfolded state. m ¼ 0.74
1STN L38G 6.0 S 0.6 3.71 Large hydrophobic buried. Possible structural relaxation
1STN M98A 9.7 S 4.60 2.32 Mutation affects greatly the unfolded state. m ¼ 0:75
1STN M98G 9.7 S 4.50 2.01 Mutation affects greatly the unfolded state. m ¼ 0:8
1STN N100A 0.0 H 5.20 0.97 Mutation affects greatly the unfolded state. m ¼ 0:8
1STN N100G 0.0 H 5.10 2.96 Mutation affects greatly the unfolded state. m ¼ 0:71
1STN N138G 29.2 C 20.1 2.1 Mutation affects greatly the unfolded state. m ¼ 0:87
1STN P117A 42.6 T 20.80 1.36 cis-Proline. Turn VIA may convert to turn I (no variation of m ¼ 1:04)
1STN P117G 42.6 T 20.90 1.81 cis-Proline. Turn VIA may convert to turn I (no variation of m ¼ 0:94)
1STN P42G 11.2 C 0.40 2.69 Slight variation of m ðm ¼ 0:89Þ: Possible structural relaxation
1STN R105A 32.9 H 1.40 20.88 No significant variation of m ðm ¼ 0:97Þ: No interpretation
1STN V111A 10.4 S 4.20 1.70 Mutation affects the unfolded state. m ¼ 0:64
1STN V111G 10.4 S 4.90 2.31 Mutation affects the unfolded state. m ¼ 0:75
1STN V23G 0.7 S 5.60 3.11 Mutation affects the unfolded state. m ¼ 1:34
1STN V99T 0.7 H 3.30 1.00 No significant variation of m ðm ¼ 1:07Þ: No interpretation
1WSY E49Q 1.6 S 2.50 21.03 Discrepancy not understood. E49A and E49G are well predicted
1WSY P57A 13.2 C 0.48 3.06 In flexible loop, exposed. P57 may be exposed in solution
2LZM L99G 0.0 H 6.30 3.94 L99G results in a 4–5 Å displacement of part of helix a solvent-

accessible declivity92

1REX I106A 4.3 3 0.93 3.75 Large hydrophobic buried; possible structural relaxation
1REX S24A 40.6 C 0.53 2.68 Ser at helix N-cap. The CyO24 (backbone) and not the side-chain is

capping the amide NH27. The N-cap penalty (see Materials and
Methods) is applied in a wrong case

1REX T43V 45.3 S 20.96 1.19 V43 changes conformation to interact with L85, as seen in the
mutant crystal structure93
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deviation of 0.97 kcal mol21. These results demon-
strate the ability of FOLDEF to predict the effect
of stabilising mutations accurately (Figure 3). It
should be emphasised that a critical step of this
prediction is the correct modelling of the mutated
side-chain. Here, because the crystallographic
structures of the mutant and of the WT proteins
are very similar, the modelling of the mutated

side-chain is relatively straightforward and conse-
quently we find the calculations to be accurate.

Protein–protein complexes

A final set of blind energy predictions were
carried out to investigate the possibility of using
FOLDEF to estimate the variation in binding free

Figure 3. Calculated DDGs com-
pared to the experimental DDGs for
the 84 mutants of the T4 lysozyme
database. The continuous lines
represent the linear regressions
obtained considering the 42 muta-
tions (X ! A, G) shown as open
circle (eq: y ¼ 20:072 þ 0:87x;
R ¼ 0:83), the 42 reverse mutations
(A, G ! X) shown as filled triangles
(eq: y ¼ 0:12 þ 0:92x; R ¼ 0:81), or
the sum of them (eq: y ¼
20:013 þ 0:86x; R ¼ 0:81), or the
sum of them (eq: y ¼ 20:013 þ
0:86x; R ¼ 0:89).

Figure 4. Calculated DDGs com-
pared to the experimental DDGs for
the 82 mutants of the protein–pro-
tein complex database. The con-
tinuous line represents the linear
regression obtained with 95% of
the training database after the out-
liers (see Results) were discarded.
The corresponding equation is y ¼
0:24 þ 1x with a correlation factor
of R ¼ 0:8: The symbols used are
the crosses for the outliers, the
open triangles for the SH3–ligand
mutants, the filled circles for the
IL4/IL4 receptor mutants, the filled
triangles for the P53 tetramer
mutants and the open circles for
the TEM–BLIP complex mutants.
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energy (DDGKD) due to mutations made at the
interface of protein–protein complexes. We calcu-
lated binding energies for four well-studied pro-
tein–protein complexes. X-ray structures are
available for all of these complexes and extensive
mutagenesis experiments at the protein–protein
interface for each of them allow a statistical esti-
mation of the quality of the energy function. We
investigated the ability of FOLDEF to reproduce
complex cooperative hydrogen-bond network
phenomena by studying mutants of the TEM–
BLIP complex.57 The ability of FOLDEF to predict
the variation of binding free energies DDGKD upon
mutation for several SH3 ligands was investigated
using the Abl-SH3 domain, and the experimental
data obtained from Ala scans of the p53 tetramer
and of the IL4–IL4 receptor complex further
demonstrated the ability of FOLDEF to predict
accurately the change in binding free energies
upon mutation of a protein–protein complex.

The global correlation obtained for the entire set
of 82 mutants between the experimental and the
theoretical DDGKD is shown in Figure 4. Overall,
we obtain a correlation of 0.64 with a standard
deviation of 0.88 kcal mol21. When the four outliers
showing large discrepancies (larger than 2s)
between DDGexp and DDGcalc are excluded, the
correlation rises to a larger value, R ¼ 0:8 with a
standard deviation of 0.66 kcal mol21, which is the
lowest standard deviation obtained in our analysis
so far. One of the outliers corresponds to the pre-
diction of SH3-interaction with ligand p28, two
others to the IL4 receptor experiments (E9Q and
R88A mutations), and the last corresponds to the
p53 tetramer experiment (A347G mutation). For
the p28 peptide, the side-chain of F59 could not be
modelled without introducing a clash with H32 or
with W36. This indicates that the structure of the
mutant complex should re-arrange upon mutation,
and this feature is not considered in the present
modelling procedure. We have no clear expla-
nation for the discrepancy observed for the two
mutants E9Q and R88A in the IL4 complex
experiment, except that the experimental DDGKD

values are very high (greater than 3 kcal mol21),
indicating a probable change in the structure.
Finally, the A347G mutation creates a cavity at the
interface between the helices interacting in the p53

tetramer and the effect of this mutation is over-
estimated in FOLDEF calculation. A structural
rearrangement of the tetramer may occur upon
mutation involving tighter packing of the helices
when a Gly residue is at the interface. (The detailed
values obtained together with the experimental
data are presented in Table 2c of the Supple-
mentary Material.)

The results obtained with the protein–protein
complexes show that the principles and para-
meters used in FOLDEF can apply to folding free
energy calculations and to binding free energy
calculations. The FOLDEF algorithm may thus be
used as a tool to guide the engineering of the pro-
tein–protein complex interface. Given the rapid
time of calculation of FOLDEF, it may prove to be
a useful tool for protein–protein docking analysis.

Summary of the results

The predictions of FOLDEF presented here have
been carried out on the largest mutant database
ever tested (see summary in Table 3). First, we
used a set of 339 mutants to adjust the weights of
the energy terms in the energy function. For 95%
of the mutants, we obtained a correlation of 0.81
between DDGcalc and DDGexp, and a standard
deviation of 0.75 kcal mol21. We then tested the
predictive power of FOLDEF on a blind test data-
base containing 625 mutants. The results obtained
with the blind test database are very similar to
those obtained with the training database, with a
correlation of 0.80 and a standard deviation of
0.84 kcal mol21. This confirmed that the fitting
procedure did not introduce any bias towards the
training database. Using a set of mutants of T4
lysozyme, we showed that the potential accounts
for the destabilising effect of mutations and for
stabilising effects (correlation of 0.81 for the predic-
tion of the stabilising mutations). Finally, we
expanded the test of the energy function to include
mutations at the interface of protein–protein com-
plexes. We showed that the parameters used in
FOLDEF to predict the change of free energy of
unfolding upon mutation had the same accuracy
for predicting the change of binding free energy
(Table 3). The global correlation obtained for 95%
of the mutant database (952 mutants) is 0.83 with

Table 3. Summary of the results

Database No. mutants Correlation Standard deviation (kcal mol21) Slope

Initial database 323 (339) 0.8 (0.7) 0.75 (0.97) 0.73 (0.67)
Blind test database 591 (625) 0.8 (0.73) 0.84 (1.02) 0.73 (0.64)
T4 lysozyme mutants (X ! A,G) 42 0.83 0.89 0.87
T4 lysozyme mutants (A,G ! X) 42 0.81 0.98 0.92
T4 lysozyme mutants (all) 84 0.89 0.97 0.86
Initial þ blind test þ T4 (A ! X) 952 (1006) 0.83 (0.77) 0.81 (1.00) 0.76 (0.69)
Protein–protein complex 78 (82) 0.8 (0.64) 0.66 (0.88) 1.03 (0.79)
Entire mutant database 1030 (1088) 0.83 (0.75) 0.81 (1.00) 0.76 (0.69)

Values in parentheses correspond to the results obtained considering all the mutants of a given database, and values without
parentheses are those obtained considering 95% of the mutants of the database.
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a standard deviation of 0.81 kcal mol21 and a slope
of 0.76. We got identical results after adding the
mutants of the protein–protein complex database
(1030 mutants in total) (Table 3 and Figure 5).

Discussion

The strategy used in this work is based on the
large number of protein mutants whose thermo-
dynamic properties have been studied experi-
mentally. Hence, the FOLDEF energy function
includes the energy data derived from model com-
pound studies, and accounts for the features
specific to the protein world. These features are,
for instance, the importance of the structural
flexibility, the existence of the unfolded state as a
reference state, and the dielectric properties of the
protein in the core or at the surface. In all these
cases, the strength of an interaction is dependent
on the structural context. FOLDEF is designed to
integrate the structural environment of an inter-
action and to predict the impact of this environ-
ment on the interactions. The specific features
taken into account in FOLDEF are discussed below.

Protein flexibility

The principle of FOLDEF is to take into account
implicitly the variation of flexibility in different
regions of the protein. It was highlighted recently
that the packing density around each atom is a
suitable parameter to predict the flexibility in
proteins.58 In fact, a related parameter (number of
contacts around an atom) was shown to improve
the prediction of point mutations in different

proteins significantly.34,59 FOLDEF calculation is
based on the atom occupancy parameter that reflects
directly the packing density around atoms. This is
one of the reasons why this parameter was preferred
to the DASA parameter, in addition to the fact that
it is much faster to calculate.36 In other methods
that we discuss later, the use of the DASA par-
ameter was not sufficient to account for flexibility
mutants.60 The knowledge of the experimental
B-factors was required and added to the equation.
In FOLDEF, the effect of the flexibility is implicitly
predicted by the occupancy of each atom. The
local flexibility of the protein is taken into account
also in the way the side-chain and backbone
entropy penalties are applied. Independent of
whether side-chains are hydrogen bonded, and
whether the backbone is involved in a hydrogen
bond network, the entropy penalties are either
fully applied or scaled down (see Materials and
Methods). All these considerations are crucial to
account for protein flexibility and for their thermo-
dynamic properties. The way they are integrated at
the different stages of a FOLDEF calculation partly
explains the success of the algorithm.

Secondary structure propensities

Several experimental studies have highlighted
the role of secondary structure propensities in
protein stability. On the one hand, introducing
residues that have favourable secondary structure
propensities at certain positions in a protein can
produce significant increases in protein
stability.24,26,61,62 On the other hand, the opposite
result is found, as shown, for instance, in the
protein GB1. Several mutants were designed in

Figure 5. General presentation of
the calculated DDGs compared to
the experimental DDGs for the 1033
mutants considered in the study.
The continuous line represents the
linear regression obtained with
95% of the training database after
the outliers (see Results) were dis-
carded. The corresponding
equation is y ¼ 0:22 þ 0:76x with a
correlation factor of R ¼ 0:83: The
symbols used are the crosses for
the outliers, the red circles for the
training database mutants, the
green triangles for the blind test
database, the cyan squares for the
T4 lysozyme mutants (A, G ! X),
and the blue diamonds for the pro-
tein–protein complex mutant
database.
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the a-helix of this protein so that the propensity for
forming b-hairpin structure was increased.
Although this variation of intrinsic propensity did
not prevent the formation of the native structure,
it had an important destabilisation effect on the
protein.

To account for this effect, which is related to the
properties of the unfolded state, we have included
secondary structure propensities in the main-chain
entropy term. On the basis of the statistical analysis
of the PDB, this term provides a rough estimation
of the intrinsic preference of each amino acid to
adopt particular w/c angles. As an example, part
of the destabilisation due to the mutation of an
alanine residue into a glycine residue is accounted
for by the main-chain entropy term. In future
developments it may be possible to add more
information, such as the secondary structure of
the neighbouring residues. Hence, the effect of
mutations in capping, turns or other constrained
local structures could be better predicted. One of
the difficulties is to prevent overlaps between the
main-chain entropy term and other energetic
factors.

The unfolded state as a reference state

The properties of the unfolded state are
implicitly taken into account in FOLDEF through
the optimal values of the weights obtained in
equation (1). These weights have been obtained
from the fitting of the training mutant database.
The values of the optimal weights are (Wvdw ¼
0:2; WsolvH ¼ 1:4; WsolvP ¼ 1:25; Wsc ¼ 0:75 and
DGhbond ¼ 21:3 kcal mol21). Since the mutants of
the blind test mutant database were equally well
predicted, we conclude that no bias was intro-
duced from the first fitting procedure and we can
discuss the physical meaning of the weights
obtained.

Regarding the weight applied to the side-chain
entropy (Wsc), we observed from the grid search
procedure that values below 1 always gave the
best correlation with the experimental data. This
could be due to the fact that, in the unfolded state,
the side-chains do not adopt all their possible
rotamers due, for instance, to the existence of
residual structure54 or neighbouring residues.
With respect to the theoretical value of the side-
chain entropy,54 a decrease by 75% ðWsc ¼ 0:75Þ
was found optimal to account for the experimental
measures.

Regarding the weight applied to the van der
Waals interactions (Wvdw), all the combinations
tested in the grid search procedure showed that
the best correlations were obtained with Wvdw

ranging from 0.2 to 0.4. The initial values of the
van der Waals energies, before they are weighted,
are derived from the transfer of model compounds
from vapour to water.63 In the unfolded state, the
polypeptide chain makes substantial van der
Waals interactions with the solvent molecules.
For that reason, the initial energies have to be

decreased. At the extreme, it has been proposed
that the van der Waals interactions may not con-
tribute to protein stability, since the interactions
with the solvent in the unfolded state would com-
pensate for the interactions made in the folded
protein.64 The results obtained here do not support
such a drastic interpretation and show that,
although the weight applied to the van der Waals
interactions is low, their final contribution to the
protein stability after the weight is applied is still
important (see below). We found that, on average,
the energy of the van der Waals interactions corre-
sponds to two-thirds of that of the hydrophobic
solvation effects.

Properties of the protein environment

Regarding the weights applied to the polar and
hydrophobic solvation terms, we found that the
optimal values were between 1.2 and 1.4. We
speculate that these weights reflect the properties
of the protein core rather than that of the unfolded
state, as in the cases discussed above. The initial
values used in FOLDEF (before the weights are
applied) were extracted from experiments study-
ing the transfer of model compounds from water
to octanol, dioxane or ethanol (see the Supple-
mentary Material for details).65 – 68 Solvents such as
octanol or ethanol most likely constitute a more
polar environment than the core of proteins. This
explains why the solvation values of polar and
hydrophobic groups have to be increased by 25%
or 40%, respectively, to account for the deletion of
such chemical groups in the core of protein.

How do the energy terms balance?

The previous discussion highlights the interest in
using empirical potentials based on the EEEF
approach (as presented in Introduction) to account
for the thermodynamic properties of proteins.
They allow for an interpretation of the weights
used in equation (1) through physical chemistry.
The relative strength of the interactions stabilising
protein and protein complexes are, on average,
well represented by the terms and weights used in
FOLDEF. They can therefore be used as a general
framework to further understand the thermo-
dynamic properties of proteins. In the following,
we present how, on average, the energetic terms
compensate each other in the calculation of the
energy DG of the entire protein. We then discuss
their relative importance in the calculation of DDG
upon mutation.

The mean contribution of each energy terms has
been reported for the 42 proteins tested in this
study normalised with respect to their number of
residues (Figure 6). It can be seen that, overall, the
energy terms taken into account in FOLDEF
compensate each other well. We found that 31
out of the 42 proteins have a global DG between
215 kcal mol21 and 10 kcal mol21. This is reason-
able if one considers the sum of the energy values
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brought by each term (summing in absolute value
,700 kcal mol21 for a 100 amino acid residue pro-
tein) and the structural heterogeneity of the tested
proteins. It can be seen in Figure 6 that the penalty
due to the burial of polar atoms is the major factor
opposing the folding of the protein. This effect is
not balanced fully by the favourable energies
brought by the hydrogen bonding term. The value
of the hydrogen bonds, DGhbond, has been fit
between 21.2 kcal mol21 and 21.4 kcal mol21,
which is in good agreement with the values pre-
viously estimated from mutant analysis34,69,70 and
helix/coil approximations.21,71 Summing the main-
chain and side-chain entropy, we found an
average value of 1.5 kcal mol21 per residue, which
is in good agreement with previously made
estimations.5 It can be noticed that the contribution
of the electrostatic interactions, although low com-

pared to the other terms, is in the same range as
the final protein DG. It indicates that cancelling
this contribution may very likely unfold the
protein partially, as it can be seen with proteins
studied at extreme pH values.

Table 4 shows the average and relative contri-
bution of each energetic factor in the calculation of
DDG for a mutation made in different protein
environment. For the sake of clarity, we considered
here four cases: whether the mutated residue is
(i) exposed, (ii) buried (threshold fixed at DASA of
30%), (iii) hydrophobic, (iv) polar, involved in at
least one hydrogen bond. Compared to the pre-
vious paragraph, these results can be seen as the
effect of side-chain substitution in protein whereas
the previous plot referred to the contribution of
the entire backbone and side-chain atoms of the
protein. A first comment from this Table is that

Table 4. Average and relative contribution (%) of the different energy terms in the calculation of DDG for different
types of mutations

Type of chemical group mutated

Non-polar
Polar involved in at least one H

bond

Energy term Buried Exposed Buried Exposed

Non-polar solvation 48.4 35.2 15.9 15.7
Polar solvation 11.2 19.7 26.9 23.2
Van der Waals 21.1 18.8 9.2 8.6
Hydrogen bond – – 28 25.7
Electrostatic (charge–charge) – – 2.8 5.4
Main-chain entropy 7.1 17.9 3.3 4.3
Side-chain entropy 10.5 6 11 15.1

The threshold for deciding that a residue is buried or exposed has been set to 30% for the DASA of the mutated residue.

Figure 6. Contributions in
kcal mol21 of the different energy
terms to the global DG calculated
for the 42 proteins tested in this
study (normalised with respect to
the size the protein). The PDB
codes of each protein are indicated
in the x-axis. The different energy
terms are the solvation of polar
atoms (filled diamond), the sol-
vation of non-polar atoms (open
diamond), the hydrogen bonds
(open circle), the entropy of
the side-chain (filled square), the
electrostatic for charge–charge
interactions (crosses), and the total
free energy (filled circle).

Prediction of Changes in Protein Stability 379



there are no terms negligible in the calculation. In
the case of hydrophobic residues, DDG is domi-
nated by hydrophobic and van der Waals energies
(70% for buried and 55% for exposed residues).
This can explain why a simple method counting
the contacts around hydrophobic residues can be
quite successful at predicting DDG.34,59 Yet, the
results show here that the situation is more com-
plex for polar residues. No individual term domi-
nates, and only a delicate balance between the
different terms can yield a proper estimation of
DDG. For instance, it is interesting to note that for
polar mutations, the contribution of the terms
favouring the formation of a single hydrogen
bond (DGhbond and DGvdw) almost equal that of the
terms opposing its formation (DGsolvP and DSsc).
The detailed structural context of the interactions,
such as the existence of a hydrogen-bond network
and the extent to which the interacting residues
are desolvated in the mutant protein, rule the
amplitude of the calculated DDG value.

Structural environments such as the existence of
water bridges, or the location at the N-cap of
helices occurs rarely in our set of mutants and
were not considered in the previous analysis.
Yet, in specific cases their contribution can be
large and should not be ignored (more than
1.5 kcal mol21 for a dozen mutants involving the
removal of buried water bridges). We believe that
future improvement of the method will lie in the
inclusion of such rarely encountered structural
contexts (helix dipole effects, p-aromatic inter-
actions) that can be essential for correct prediction
of protein thermodynamic properties.

In order to find alternative parameters that may
be important for further improvement of the
FOLDEF predictions, we tested how energy
minimisation and the quality of the template struc-
tures may affect the calculations (data not shown).
After energy minimisation of the protein structures
(using the GROMOS force-field), we observed
that the global DG calculated with FOLDEF also
decreases. However, this energy minimisation did
not improve the prediction of DDG for the lyso-
zyme mutants. We also noticed a higher rate of
success in the predictions when structures
obtained at high resolution (below 1.5 Å) were
used. The fact that FOLDEF calculation is sensitive
to the quality of the structure constitutes a crucial
point in extending its use to the field of structure
prediction. Since it includes both enthalpy and
entropy energy terms, it may be used as a fast
scoring method to rank the large number of struc-
tures generated by the structure prediction
algorithms.

Comparison with other methods

Here, we briefly discuss our results and com-
pare them to results obtained by other methods
developed for similar purposes. We discuss only
the methods that deal with a large database of
mutants and that consider any type of interactions,

hydrophobic and polar. One method is an EEEF
method based on the analysis of lysozyme
mutants,60 another is a statistical based method
(SEEF).12,13,72

Recently, Yutani and co-workers studied the
relationships between changes in the stability and
the structure of 110 mutants from the human and
phage T4 lysozymes. By a least-squares fit of the
experimental DDG, they derived a unique equation
that can represent the thermodynamic properties
of proteins. A major difference between FOLDEF
and the method described by Yutani is that they
use the variation in accessible surface area (DASA)
to calculate the variation of the solvation for polar
and hydrophobic groups, whereas FOLDEF is
based entirely on the atomic occupancy parameter.
In their first prediction, Yutani and co-workers
used the parameters derived from the analysis of
54 mutants of human lysozyme to predict the DDG
values for 56 T4 lysozyme mutants. A large
standard deviation of 2.39 kcal mol21 was obtained
between the estimated and the experimental DD
terms. Excluding atoms having a high B-factor
in the crystal structure (above 70 Å2), from the
calculation, the standard deviation decreased to
1.82 kcal mol21. When the parameters of the
equation were fit on both the human and the T4
lysozymes (110 mutants with no blind test), exclu-
ding atoms with a high B-factor, the final standard
deviation they got was 1.03 kcal mol21. This stan-
dard deviation is slightly higher than that obtained
by FOLDEF considering all the mutants of the
database (1088 mutants among which 749 are
blind predictions). As we mentioned above, there
is no need for the use of the experimental B-factors
in FOLDEF. This point highlights the advantage of
using the atomic occupancy parameter instead of
the DASA calculation, besides the fact that it is
faster to compute. We summarise the other signifi-
cant differences between the approach taken by
Funahashi et al.60 and FOLDEF. First, a specific
term accounting for the creation of cavities in the
structure was introduced by Funahashi et al.60 In
FOLDEF, there is no need for such a term, since
the energy penalty brought by the cavity is
probably accounted for by the decrease of occu-
pancy of the atoms close to the cavity. Last, the
mutations involving electrostatic interactions and
steric hindrance are taken into account in the
FOLDEF (see Materials and Methods) are, at the
present stage, not included in the equation derived
by Funahashi et al.60

A different approach based on the use of statis-
tical potential has been used to predict the
variation in stability upon mutation.12,13,72 It is
interesting to compare FOLDEF results and those
in this work to highlight the weak and the strong
points of each approach. The advantage of statis-
tical potentials lies in two points: (i) for local
interactions (important for solvent-exposed resi-
dues), the SEEFs implicitly account for a complex
ensemble of interactions between one residue and
its sequence neighbours. These interactions govern,
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for instance, the amino acids’ local propensities.
(ii) They do not require modelling of the mutant
side-chain. In some cases, this may have the
advantage to account for the adaptation of the pro-
tein structure around the site of the mutation
implicitly.

For fully exposed residues with solvent accessi-
bility greater than 50%, Gilis et al. obtained very
good correlation factors 0.87 and 0.86 for a subset
of 90% of their mutant database containing 106
and 150 mutants, respectively. Considering only
90% of our mutant database involving residues
having an accessible surface higher than 50% (208
mutants), we obtain a much lower correlation of
0.68, with a standard deviation of 0.51 kcal mol21

and slope of 0.65.
Regarding the residues with surface accessibility

below 50% the results of FOLDEF on 95% of the
database (718 mutants) are much better than those
obtained with the statistical method. The corre-
lation between DDGexp and DDGcalc is 0.83, with a
standard deviation of 0.85 kcal mol21 and a slope
of 0.76. For these types of residues, the method
developed by Gilis et al. had to consider different
weighting factors for different degree of solvent-
accessibility. The results of their fitting procedure
show good correlation for residues below 20%
(R ¼ 0:80 for 121 mutants) and between 20% and
40% (R ¼ 0:82 for 65 mutants) but failed to predict
mutants with accessibility comprised between
40% and 50% (48 mutants, 20% of the database
considered).

Therefore, the comparison between the statistical
potential12,13,72 and the methods developed in
FOLDEF show an advantage of the statistical
methods to account for thermodynamic properties
at the surface of proteins based on the local
interactions of the residues and on their intrinsic
propensity to adopt specific secondary structure.
For more buried interactions, the atomic resolution
and description of the interactions appears as more
potent. These results indicate that an optimal
energy function to describe the relative strength of
the interactions stabilising protein should benefit
from both the statistical information of the protein
structure database and from the detailed atomic
data. Additional statistical information, particu-
larly about the neighbouring residues in the
sequence, will be included in FOLDEF to increase
the accuracy of the predictions for fully exposed
residues.

Conclusion

FOLDEF was developed to provide a fast and
quantitative estimation of the importance of the
interactions contributing to the stability of proteins
and protein complexes. The predictive power of
FOLDEF was tested on a very large set of point
mutants spanning most of the structural environ-
ments found in proteins. The standard deviations
(Table 3) indicate that for 70% of the mutants the

error was below 0.81 kcal mol21. This value
provides a confidence interval that can be used to
assess the reliability of FOLDEF predictions for
protein engineering applications. Based on this
large-scale analysis, we found that the successful
prediction of protein thermodynamic properties
from 3D structures requires two major features:
(i) energy terms that take into account the fine
details of the structure (hydrogen bonds, water
bridges) explicitly; (ii) energy terms that account
in an implicit manner for specific properties of
proteins such as the flexibility or the existence of
the unfolded state.

FOLDEF was validated on monomeric proteins
and on protein complexes. Hence, the method
may be used to drive the engineering of protein
complex interfaces. It may be used to understand
and predict the specificity of protein–protein
recognition. The use of fast methods to estimate
the stability of protein conformations is of signifi-
cant interest for the improvement of structure
prediction methods, in particular in the field of ab
initio predictions. A critical step of the method
is the ability to discriminate between wrong and
correct structures in a large ensemble of generated
folds. As suggested recently,73,74 the consideration
of more detailed structural interactions based
on thermodynamic parameters may provide an
important filter to identify the correct folds. In
this way, the energies calculated using FOLDEF
could serve as a useful indicator of the quality of a
structural model.

Finally, the present energy function has been
integrated in the program FOLD-X, which is
designed to predict folding pathways from 3D
structure.4 We hope to improve the prediction of
folding pathways by using the present energy
function and thus consider topological constraints
and detailed interactions in the calculation of the
folding pathway. Work along these lines is
ongoing.

The FOLDEF is available via a web-interface†
and the compiled code can be obtained by sending
an email to the authors. For groups interested in
further developing the algorithm, the source code
can be obtained. The modelled structures and
experimental DDG values for the training database,
the blind test database and the protein complexes
are available at the same web address. In this way,
the database used in this study can easily be used
to benchmark other algorithms designed to predict
stability variations upon mutation.

Materials and Methods

Composition of the potential

FOLD-X energy function (FOLDEF) includes several
terms: van der Waals interactions, solvation effects,
hydrogen bonds, water bridges, electrostatic and entropy

† http://fold-x.embl-heidelberg.de
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effects for the backbone and the side-chain see equation
(1) in Results.

Solvent exposure

In FOLDEF, interaction energies are scaled with the
solvent accessibility of the atoms involved in the inter-
action. The solvent accessibility is estimated using the
atomic occupancy method (Occ),36 – 38 which sums the
volumes of the atoms j surrounding a given atom i.
The occupancy of an atom i, Occ(i ), is calculated using
equation (2):

OccðiÞ ¼
X

j;dij#6 �A

Vj e
2

dij
2

2s2

� �
ð2Þ

where Vj is the fragmental volume of atom j75 (see Table
3 in the Supplementary Material), dij is the distance
between atoms i and j and exp(2dij

2/2s2) is the envelope
function. We used a distance cut off of 6 Å and a distance
s ¼ 3:5 �A was used because it corresponds roughly to
the minimum of the Van der Waals potential for two
heavy atoms.38 Two limit values, Occmin and Occmax, are
assigned to each atom type as the reference value for a
fully exposed and fully buried atom37 (see Table 3 in
Supplementary Material). The FOLDEF energy evalu-
ation uses these two limit values to scale the strength
of the interactions by applying a scaling factor, Sfact,
calculated using the linear equation (3):

SfactðiÞ ¼
OccðiÞ2 OccminðtiÞ

OccmaxðtiÞ2 OccminðtiÞ
ð3Þ

if Occ(i ) . Occmax(ti), SfactðiÞ ¼ 1 and if Occ(i ) , Occmin(ti),
SfactðiÞ ¼ 0:

For every atom type Occmin and Occmax have been
derived from a statistical analysis of a protein structure
database.37 (see Table 3 in Supplementary Material).

van der Waals and solvation energies

Both the van der Waals and the solvation energies
were obtained from the free energy of transfer of the
amino acids from vapour to water and from organic
solvents to water76 (Table 4 in Supplementary Material).
The van der Waals atomic energies (see Table 3 in
Supplementary Material) were taken from the free
energy of transfer of small compounds from vapour to
water (giving the sum of the solvation and the van der
Waals energies) and from water to cyclohexane (giving
the solvation energies).63 As proposed,63 the van der
Waals energy have been deduced from the difference
between these two sets of parameters. We decomposed
the van der Waals energies of every amino acid into
atomic energies assuming that the van der Waals
energies vary linearly with the fragmental volumes of
the atoms as defined in.75 Using the CH3 of the Alanine
as a reference, we estimated that the van der Waals
energy was 20.082 kcal mol21 per unity of atomic
volume buried (in Å3).

The atomic solvation energies were obtained using the
same method as for the van der Waals energies. The only
difference is that the experimental data were obtained by
averaging the values from three different studies. Two of
these studies measured the free energies of transfer of
amino acids from water to n-octanol65 and from water to
ethanol or dioxane.66,67 The third one comes from the par-
tition coefficients between water and n-octanol of many
model compounds.68 The three scales correlate well with

each other (R ¼ 0:94 on average). From these values, we
estimated the solvation energy at 20.0314 kcal mol21 Å23

for hydrophobic atoms, at 0.8 kcal mol21 for polar
atoms and 1.44 kcal mol21 for charged atoms (Table 3 in
Supplementary Material).

We checked that, for the 20 amino acids, the sum of
the atomic energies obtained by these methods correlate
well with the experimental reference data (correlation
factor R ¼ 0:91 for the van der Waals energies and R ¼
0:99 for the solvation energies (see Figure 1 in Supple-
mentary Material)).

In the case of polar atoms when the maximum num-
ber of hydrogen bonds for a particular atom is reached
(or achieved), we assumed that the atom is completely
desolvated and apply the maximum solvation penalty
regardless of the occupancy value (Occ(i )).

Hydrogen bonds

This calculation concerns polar/polar and polar/
charged atoms pairs are within 3.6 Å. A hydrogen bond
between two atoms is accepted or rejected based on
specific angle criteria.77 The contribution of a hydrogen
bond to the free energy has been estimated at
21.3 kcal mol21 between two polar atoms and
21.4 kcal mol21 between a charged and a polar atom.
These particular values result from the fitting of the
training database (Figure 1) and are consistent with the
range of values usually proposed for hydrogen
bonds.34,69

Electrostatics

Electrostatic energies are calculated between charged
atoms of the N and C termini, and between the charged
atoms of Asp, Glu, Arg, Lys and His residues only if
they are closer than 20 Å. The contribution of the electro-
static interaction to the free energy calculation is deter-
mined using Coulomb’s equation with an ionic strength
screening term (4):

Eij ¼
332qiqj

1dij
expð2dijKÞ ðin kcal mol21Þ ð4Þ

where qi and qj are the charges of atoms i and j, as
defined in Table 3 in Supplementary Material, 1 is the
dielectric constant of the medium, dij is the inter-atomic
distance between i and j, and K is the Debye–Hückel
parameter to account for ionic strength effect of the
solution defined as:

K ¼ ð8pe2NI=1000kTÞ1=2 ¼ 5:66

ffiffiffiffiffiffi
I

T

r
ðin �A21Þ ð5Þ

where I is the ionic strength of the solution (in M), N is
the Avogadro’s number, k is the Boltzmann’s constant
and T is the temperature (in K).

All the calculations were done with 1 linearly increas-
ing from 8 to 80 with the scaling factor Sfact (see above),
T ¼ 298 K and I ¼ 0:05 M: As a first approximation, we
assumed that all amino acid pKa values were unper-
turbed by the protein environment, and correspondingly
we assigned the standard charge at pH 7.0 to all
residues.

Backbone and side-chain entropy

The backbone entropy term is used to account for the
entropy cost of fixing a residue backbone.4 The value of
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the backbone entropy was calculated from the secondary
structure preference of amino acid derived from the
statistical analysis of a protein structure database.32

These values were scaled so that values for Ala, Gly
and Val residues in helix and strand conformations are
the same as those used.4 For that reason, the values of
the main chain entropy were not further adjusted and
the weight of the main chain entropy Wmc was main-
tained at 1.

The backbone of residues located in loops is usually
more mobile than in secondary structure elements and
the backbone entropy should therefore not be counted
fully in these cases. To account for this effect we applied
a simple rule for residues forming any backbone–back-
bone hydrogen bond: if none of the two neighbouring
residues are involved in backbone–backbone hydrogen
bonds, the backbone entropy is divided by 3. If only one
of the neighbouring residues forms no backbone–back-
bone hydrogen bonds, the backbone entropy is divided
by 2. Regarding Pro, it is well known that a non-Gly
residue preceding a Pro residue can mainly adopt an
extended conformation and thus has less conformational
freedom in the unfolded state.78 Thus, the main chain
entropy of non-Gly residues preceding Pro is divided
by 2.

The side-chain entropy is calculated from the values
estimated.33 The scaling factor Sfact is applied to the
side-chain entropy term to account for the fact that the
mobility of a side-chain decreases with its solvent acces-
sibility. However, if a side-chain makes a hydrogen
bond or an electrostatic interaction, then we apply the
full entropy cost since the formation of an interaction
reduces the mobility of the side-chain. If the entropy
cost is bigger than the favourable interaction energy
brought by the hydrogen bond and the electrostatic
interactions, neither these interactions nor the entropy
of the side-chain are counted.

Water bridges

The calculation of the effect of water in protein
stability is a complex issue. Several experimental studies
show that the deletion of polar atoms that make hydro-
gen bonds with a partially of fully buried water molecule
can have a large destabilising effect on the protein
interaction.30,31,79,80 We define a water bridge as a water
molecule that makes more than two hydrogen bonds
with the protein. Removing one of the polar groups
involved in a water bridge may exclude the bound
water from a particular site of the protein and induce
the desolvation of the other polar groups partners of the
water molecule.

In the FOLDEF, the energy assigned to a water bridge
interaction allows us to reduce the solvation penalty for
buried polar atoms when they are involved in such an
interaction. To predict the positions of water bridges, we
used the method described.81 This method considers all
the potential locations of water molecules for all polar
atoms. Water molecules that make van der Waals clashes
with the protein atoms are discarded (limit distances of
2.6 Å and 3.1 Å for N and for O, C and S atoms,
respectively82). We predict the existence of a water bridge
when two water molecules are found within a 2.8 Å of
each other. The two molecules are then fused and the
coordinates of a mean water molecule are calculated.
When a likely water bridge is found, a search for other
polar groups that are likely to contribute to the hydrogen
bond network around the water molecule is performed.

The following fast calculation is used to estimate DGwb,
the contribution of a water bridge to the stability of
a protein using equation (6). Only the water bridges
with negative DGwb are added to the global energy of
the protein.

DGwb ¼ NhbDGhb þ SfactDGsolvW þ dSprot þ ð1 2 SfactÞS
max
wat

þ SfactS
min
wat ð6Þ

where Nhb is the number of hydrogen bonds between the
water and the protein, DGhb is the energy of a hydrogen
bond, DGsolvW is the solvation cost for water burial (see
Table 3 in Supplementary Material), Sfact is the scaling
factor of the water molecule and dSprot is the additional
entropy cost associated with fixing the side-chain or the
main-chain involved in the water bridge. Smin

wat and Smax
wat

are the entropy penalties associated with the fixation
of a water in a fully buried and fully solvent exposed
position, respectively.

At the surface of a protein, a water molecule can adopt
many more configurations than when it is fixed in a
cavity.31 Hence, the fixation of the water molecule in the
configuration where it makes the full water bridge
should have a higher entropy penalty at the surface
than in the core of the protein. It is important to note
that the term Smax

wat may also reflect additional factors
that reduce stability of water bridges in fully exposed
location. We used the entropy cost for fixing a buried
water molecule Smin

wat ¼ 0:92 kcal mol2183 and Smax
wat ¼

2:5 kcal mol21 at room temperature.

Additional features taken into account in
the potential

van der Waals clashes

In some structures of the protein database, van der
Waals clashes are observed and can be due to the reso-
lution of the structures. Given that FOLDEF is based on
the atomic occupancy, the van der Waals clashes result
in an overestimation of the solvation and van der Waals
energies. To circumvent this problem a term has been
introduced to account for van der Waals clashes in pro-
teins. The condition for the existence of a clash is that
dij , (Ri þ Rj 2 0.35). The value of 0.35 Å is a tolerance
factor, which corresponds to the resolution of the crystal
structure (typically ,2 Å). dij is the interatomic distance
between atoms i and j and Ri and Rj are the correspond-
ing atom radii given in the Table 1 of Supplementary
Material. The correction in energy is given by the
formula:

DGclash ¼ DclashSfact ð7Þ

where

Dclash ¼ Ri þ Rj 2 0:35 2 dij ð8Þ

and Sfact is the scaling factor that takes solvent exposure
into account (see above). (For structures with resolution
lower than 2 Å, DGclash is usually zero and does not
excess 1.0 kcal mol21 for one residue in a protein).

N-cap of a-helices

At the N terminus of a a-helix, three amide protons
(NH) of the backbone are structurally constrained,
extending outwards and close to each other in space.
Because of steric constraints, it has been shown that
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change in the location of the water molecules bound to
these NH could highly affect the stability of the protein.84

A Gly at the N-cap involves no steric constraints and
water molecules can solvate perfectly the amide protons,
whereas the Ala side-chain at the same position affects
the solvation. The Sfact scaling factor, used to estimate
the desolvation of the NH groups, is not sensitive
enough (no directionality) to take this effect into account.
Therefore, if the N-cap residue is neither a Gly nor has
a short polar side-chain able to cap the helix N termi-
nus (Asp, Thr, Ser, Asn), a desolvation penalty of
1.5 kcal mol21 is given to the residue at the N-cap. This
value was obtained from the analysis of several Ala-Gly
mutations made at the N-cap of helices.34

Selection of the mutants in the database

The training database contains 339 mutants that were
experimentally studied in nine different proteins,
Barnase, CI-2, Spectrin and Src SH3, Sso7d, Tenascin,
FKBP, Ada2h and CheY, names with ref (see Table 1 in
Supplementary Material). The blind test database was
built considering all the mutants of the ProTherm
database28† involving a single conservative mutation
made in a monomeric protein and studied between pH
6 and 8. Because they represent a large set of data, we
also included the ensemble of mutants of the T4 lyso-
zyme studied at pH 3 or 2. We also included the set of
mutations characterised on the human lysozyme23 and
on the protein G and protein L49,50 that were not yet
taken into account in the ProTherm database28 (see
details in Table 2a in Supplementary Material). Data
and PDB codes for the T4 lysozyme mutants were
retrieved from the ProTherm database28 (see details in
Table 2b in Supplementary Material). The thermo-
dynamic data used in the protein–protein complex data-
base were recovered from Ref. 57 for TEM–BLIP (PDB:
1JTD), Ref. 85 for the SH3–ligand (PDB: 3BP2), Ref. 86
for the P53 tetramer (PDB: 1AIE) and Refs. 87,88 for the
IL-4/IL-4 receptor (PDB: 1IAR) (see details from
Table 2c in Supplementary Material). In the case of the
SH3–ligand mutants, we only considered the ligands
whose affinity have been determined using the precise
titration method and not using the extrapolation
method.85 For all the complexes, except for the P53
tetramer mutants, the DDGKD were computed by calcu-
lating the difference between the energy of the bound
state and the energy of the isolated monomers. For P53,
since the monomer is unfolded, we only considered the
energy of the tetramer. The values of the DDG calculated
between the WT and the mutants were divided by 4 to
account for the effect of the mutation in one monomer.

Modelling mutants

Point mutations were modelled using a modified ver-
sion of the WHAT IF56 mutate functions. The modifi-
cations ensured that the Cb atoms of the mutated
residue(s) were at identical positions in the wild-type
and mutant enzymes. We did not change any atom
positions for mutations that involved only deletion of
atoms (all Ala and Gly mutations, Ile to Val, Tyr ! Phe,
etc.) or for mutations that only involved changing atom
types (Cys ! Ser, Val ! Thr, Thr ! Val, etc.). For
the mutations of the T4 lysozyme (A,G ! X) and of the

SH3–ligand complex, that do not fall in one of the
above categories, we used the so-called “experimental”
version of the WHAT IF mutate function89 followed by a
debumping step (the WHAT IF DEBHBO function) that
optimises the number of hydrogen-bonds for the
mutated residue. We did not at any point change coordi-
nates for any other atoms than those in the mutated
residue. For the T4 lysozyme (A,G ! X) mutants, the
van der Waals clash energies were not taken into account
in the final energy because steric hindrance of the newly
introduced residue with the protein could not be
avoided due to the simplicity of the modelling
procedure.

Following mutation we optimised the hydrogen-bond
network in the protein using a method developed by
Hooft et al.,90 since it has been shown91 that inconsisten-
cies in the hydrogen-bond network (especially His, Asn
and Gln residues with wrong X1, X1 and X2 angles) can
introduce significant errors in protein energy calcu-
lations. The final structures used with FOLDEF consist
of all heavy atoms of the protein and the backbone
amide protons. All ions and water molecules were
stripped from the PDB files before mutating any residue.

Fitting of the weights

The optimal set of weights used in equation (1) were
obtained by a grid search method considering first the
weights of the van der Waals (Wvdw), the solvation of
hydrophobic atoms (WsolvH) and the side-chain entropy
(Wsc). We first considered the ensemble of 151 mutations
from the training database that involves only hydro-
phobic residues not identified as outliers. In this way,
we excluded electrostatics and hydrogen bond energies
from the initial fitting procedure. All combinations of
values for the weights Wvdw, WsolvH, and Wsc were tested
between 0 and 2 by steps of 0.2. The ten best combi-
nations of weights, Wbests, giving the lowest standard
deviation error between DDGexp and DDGcalc, were
selected for a second round of fitting on the entire
training database. In this second round we considered
the weights for the solvation of polar atoms WsolvP and
the hydrogen bond value DGhbond. Every of the Wbests

combination was tested with WsolvP and DGhbond varying
between 0 and 2 by step of 0.2 and from 21 to 22 by
steps of 0.1, respectively. The lowest standard deviation
associated with the higher correlation was obtained for
the set of values (Wvdw ¼ 0:2; WsolvH ¼ 1:4; WsolvP ¼ 1:2;
Wsc ¼ 0:8 and DGhbond ¼ 21:4 kcal mol21). We further
explored improvement of the fit by varying the value of
each weight by units of 0.05. The final optimal set of
values was Wvdw ¼ 0:2; WsolvH ¼ 1:4; WsolvP ¼ 1:25;
Wsc ¼ 0:75 and DGhbond ¼ 21:3 kcal mol21:
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