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One of the most direct benchmarks for electrostatic models of macromolecules is provided by the pKa’s of
ionizable groups in proteins. Obtaining accurate results for such a benchmark presents a major challenge.
Microscopic models involve very large opposing contributions and suffer from convergence problems.
Continuum models that consider the protein permanent dipoles as a part of the dielectric constant cannot
reproduce the correct self-energy. Continuum models that treat the local environment in a semi-microscopic
way do not take into account consistently the protein relaxation during the charging process. This work
describes calculations of pKa’s in protein in an accurate yet consistent way, using the semi-microscopic version
of the protein dipoles Langevin dipoles (PDLD) model, which treats the protein relaxation in the microscopic
framework of the linear response approximation. This approach allows one to take into account the protein
structural reorganization during formation of charges, thus reducing the problems with the use of the so-
called “protein dielectric constant”,εp. The model is used in calculations of pKa’s of the acidic groups of
lysozyme, and the calculated results are compared to the corresponding results of discretized continuum (DC)
studies. It is found that the present approach is more consistent than current DC models and also provides
improved accuracies. Significant emphasis is given to the self-energy term, which has been pointed out in
our early works but has been sometimes overlooked or presented as a small effect. The meaning of the
dielectric constantεp used in DC models is clarified and illustrated, establishing the finding (e.g. King et. al.,
J. Phys. Chem.1991, 95, 4366) that this parameter represents the contributions that are not treated explicitly
in the given model, rather than the “true” dielectric constant. It is pointed out that recent suggestions to use
largeεp to obtain improved DC results might not be much different than our earlier suggestion to use a large
effective dielectric for charge-charge interactions. Thisεp reduces the overestimate of charge-charge
interactions relative to models that use smallεp while not considering the protein relaxation explicitly.
Unfortunately, the use of largeεp does not reproduce consistently the self-energies of isolated ionized groups
in protein interiors. The recent interest in taking protein flexibility into account in pKa calculations is addressed.
It is pointed out that running MD over protein configurations will not by itself lead to a more consistent
value ofεp. It is clarified that a smaller value ofεp, which is not really more (or less) consistent with the
physics of the proteins, will be obtained if one uses our LRA (linear response approximation) formulation,
generating configurations of both neutral and ionized states of the protein. It is also stated that such studies
have been a standard part of our approach for some time. The present model involves a consecutive running
of all-atom MD simulations of solvated proteins and an automated used of the electrostatic PDLD model.
This allows one to move consistently to any level of explicit solvent model, keeping an arbitrary number of
solvent molecules in an explicit all-atom representation, while treating the rest as dipoles. This capacity is
used in examining the microscopic basis of the PDLD models by comparing its free energy contributions to
those obtained by the all-atom linear response approximation treatment. The agreement appears to be quite
encouraging, thus further verifying the microscopic character of the PDLD model. Finally it is reclarified
that real continuum models cannot provide proper descriptions of charges in protein and that current DC
models are becoming more and more microscopic in nature.

1. Introduction

Electrostatic energies play a major role in controlling the
functions of proteins1-6 and provide what is probably the most
important element in structure-function correlation of biological
molecules.3,4,7,8 Thus, the ability to determine accurately
electrostatic energies is a key requirement in any attempt to
predict functional properties of proteins.
One of the most direct and challenging benchmarks for

electrostatic models is provided by the pKa’s of ionizable groups
in proteins. In fact, it has been argued that the ability to predict
enzyme rate constants is limited by the accuracy of the
corresponding electrostatic calculations and therefore by the
accuracy of pKa calculations.9

The challenge of evaluating pKa’s and the corresponding
titration curves has been addressed on a macroscopic level quite
early in the pioneering works of Linderstrom-Lang,10 Tandford
and Kirkwood,11 and others.12 However, these early works
overlooked the fact that the pKa of a given ionized group
depends on the corresponding self-energy, which is determined
by the local environment. These studies concentrated only on
the interaction between ionizable groups and considered the
intrinsic pKa as an adjustable parameter, thus avoiding the most
challenging problem altogether (see discussion in refs 3, 13).
Such approaches have been justified at the time of the influential
Tanford and Kirkwood (TK) work11when it was not clear what
proteins looked like, and it could have been assumed that all
ionized groups are located on the surfaces of the proteins.
However, with the emergence of protein crystal structures of
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proteins it became clear that ionizable groups can be located
quite far from the surfaces of proteins. This finding appeared
to be inconsistent with the implicit assumptions of the TK model
and the corresponding calculated pKa’s (for example a consistent
use of the TK model would produce incorrect pKa’s as is
demonstrated in Tables 12-16 of ref 14). Nevertheless, the
TK model continued to be popular for quite some time5,15

because of its simplicity and rigorous derivation (of what turned
out to be an incomplete model) and perhaps because the crucial
role of self-energies of charges in proteins13 was not widely
appreciated.
The fundamental problems associated with the self-energy

and the corresponding intrinsic pKawas realized9,13,16in the mid
1970s when it was recognized that the local environment, which
was not considered in macroscopic models, plays a crucial role
in determining the energetics of ionized residues. This realiza-
tion led to the first consistent treatment of the pKa of ionizable
groups in proteins by a series of simplified microscopic
models3,9,16,17 and subsequent semi-microscopic models.14,18

Most of these early studies involved the use of the protein
dipoles Langevin dipoles (PDLD) model. The main idea behind
the PDLD approach has been the realization that the safest way
to elude the traps in the continuum treatments of the electrostatic
energies in macromolecules is to use microscopic models where
all interactions are considered explicitly even if this requires
the introduction of simplified potential functions. The resulting
model has been discussed and examined extensively elsewhere
(e.g. ref 14). The justification of this model and its consistency
with the actual polarization of water molecules and other polar
models have been demonstrated.3,10,19,20 The PDLD model was
sometimes misunderstood21 including recent suggestions that
this explicit dipolar model is a macroscopic model.25 While
we disagree with these suggestions,26 we think it is useful to
recognize that regardless of what name is chosen to describe
explicit dipolar models, one fact remains: the PDLD model
treated electrostatic energies in protein consistently at least a
decade before any alternative macroscopic models.
The understanding of the relationship between pKa and

solvation energies has increased significantly in recent years.
Evaluation of pKa’s in solution using experimental gas phase
energies and calculated solvation energies has been reported
quite early.29 Evaluating pKa’s using quantum mechanical
calculations of gas phase energies and macroscopic estimates
of solvation energies has also become quite common re-
cently.30,31 However, evaluating pKa’s in solution is trivial as
compared to the challenges in evaluating pKa’s in proteins.32

In solution one can obtain almost perfect agreement by
calibrating empirical van der Waals radii (see ref 29) or Born’s
radii, while in proteins the pKa is quite different in different
regions, and a given radius cannot reproduce the correct value
everywhere.
Discretized continuum (DC) methods34-36 were developed

partially in order to be able to construct “realistic” shapes of
the systems of interest. However, despite the ability to represent
the actual shape of proteins and the dielectric effect of the
surrounding solvent, DC methods did not give reasonable pKa

values for ionizable groups in proteins until the gradual
realization that the local environment must be treated in a
microscopic way (see discussion in subsequent sections). DC
approaches with semi-microscopic treatments of the local
environment and the corresponding self-energies started to
emerge in the early 19904,37-39 and are now commonly used.
Attempts to evaluate pKa’s in proteins by fully microscopic

free energy perturbation (FEP) approaches were also re-
ported,14,40-42 and a very instructive attempt to use the linear

response approximation (LRA) was reported recently by Levy
and co-workers.43

Despite the above mentioned progress there are still major
problems and challenges with regard to the meaning of the
dielectric constant used in macroscopic models8,44 and the
convergence of microscopic models. As much as the evaluation
of pKa’s in proteins is concerned, there are still large deviations
between calculated and observed values17,38and some confusion
with regard to the difference between obtaining precise results
by macroscopic models (where a large dielectric constant leads
automatically to such results) and obtaining reliable results by
microscopic models (see discussion in refs 8, 45).
The present work revisits the challenge of evaluating pKa’s

of ionizable residues in proteins. This is done in a more
extensive and systematic way than in our earlier works, using
more powerful computers and more extensive averaging pro-
cedures. The main emphasis is placed on our semi-microscopic
model since it can be compared directly to alternative DC
models. This allows us to demonstrate the crucial role of protein
reorganization during the charging process and its relationship
to the dielectric constant used in the DC models.
The structure of the paper is as follows: Section 2 describes

our theoretical approaches. Crucial concepts such as self-
energies and their role in consistent evaluation of electrostatic
energies in macromolecules are pointed out. The importance
of consistent introduction of microscopic elements in the so-
called macroscopic treatment is reemphasized, pointing out that
the protein configuration should be relaxed with the charged
and uncharged configuration in order to be consistent with the
correct physics of electrostatic effects. Our treatment of
interactions between ionized groups and the corresponding
treatment of titration curves is outlined. The implementation
of automated and consistent configuration averaging in the
PDLD/S and PDLD methods is briefly described. The main
features of our all-atom LRA approach are outlined emphasizing
the treatment of long-range electrostatic effects. Section 3
describes our computation studies, comparing first the results
of the PDLD/S methods to related DC approaches, pointing out
the advantages of our consistent treatment. Next we establish
the close relationships between the LRA and PDLD models and
demonstrate that the semi-microscopic version of the LRA
model (LRA/S model) is as accurate as the PDLD/S model.
Finally, we discuss in section 4 the implications of the present
study in terms of both fundamental concepts of electrostatic
effects in proteins and practical aspects of pKa calculations.

2. Theoretical Approaches and Simulation Strategies

2.1. General Formulation. 2.1.1. The Energetics of Ionized
Groups in Proteins. The energy balance associated with
ionizing a group in a protein can be described by the
thermodynamic cycle of Figure 1. This cycle which has been
introduced in ref 9 gives the pKa of an ionizable residue by

where p and w designate protein and water, respectively, and
∆Gsol

wfp represents the free energy difference of moving the
indicated group from water to its protein active site. This free
energy difference is considered formally as a change in
“solvation” free energies.
Equation 1 can be rewritten as

where the∆∆G term consist of the last two terms of eq 1. This

∆Gp(AHpfAp
-+Hw
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fundamental equation (that might seem obvious today) and the
corresponding thermodynamic cycle have been formulated in
ref 9 and later by others.37,38

Using eq 2 converts the problem of evaluating a pKa in a
protein to evaluation of the change in “solvation” energy
associated with moving the charge from water to the protein
site. This is significantly simpler, and at present more reliable,
than the evaluation of the absolute pKa, which involves the
determination of the gas phase proton affinity and the solvation
of A- and H3O+

.
13,29,33,46

In order to evaluate the free energy of an ionized group in a
protein, it is useful and convenient to consider first the self-
energy of ionizing this group when all other ionizable groups
are uncharged and then to consider the effect of charging the
other groups to their given ionization state. Thus, we can
express the∆Gsol of eq 1 as

where∆Gself is the self-energy associated with charging theith
group in its specific environment. In the case of a charge in a
protein we decompose∆Gself into the interaction between the
charge and its surrounding permanent dipoles (∆Gqµ) and
induced dipoles (∆GqR) as well as with the water molecules in
and around the protein (∆Gqw). Thus eq 3 can be viewed as
the sum of the loss of “solvation” energy associated with
removing the charges from water (-∆Gself

w ) plus the “solva-
tion” of the charge by its surrounding protein environment (the
protein dipoles and water molecules) and finally the interaction
between the charge and the ionized groups.
It is important to note that the crucial self-energy terms in

eq 3 were later adopted by other workers37 and renamed,
introducing a cycle that involves a hypothetical nonpolar protein
(see ref 18 for such a cycle) where the charge is first moved
from water to a hypothetical nonpolar environment, without the
protein permanent dipoles, followed by activation of the dipoles.
In this new notation we have

where the free energy of the first step is denoted by∆GBorn,

while the interaction between the ionized group and its polar
environment has been named “∆Gback”. The ∆Gback term is
given to a good approximation by∆Gqµ/εp, where εp is the
assumed dielectric “constant” of the protein (the meaning of
this parameter will be discussed in subsequent sections). It is
also possible to relate our original energy decomposition to other
recent expressions by writing

where the first term designates the interaction with the protein
permanent dipoles and the second term represents the electro-
static work of moving the system to a nonpolar protein. Here
we are close to the notation of ref 47, except that in our
microscopic treatment∆Gdipolesand∆Gdesolvare not scaled by
εp and that the “desolvation” energy involves the “dielectric
effect” of the induced dipoles and the solvent when the
permanent dipoles are already turned on. The PDLD treatment
does not involve a thermodynamic cycle with a hypothetical
nonpolar protein, but a cycle where the charge is moved directly
to the real protein.
In general we can express the pKa of each group of the protein

by

where pKint,i
p is the so-called intrinsic pKa that theith group in

the protein would have when all the other groups are in their
neutral states, and∆pKa,i

chargesrepresents the effects of the other
ionized groups. Using eqs 2 and 3, we can rewrite eq 6 as

where∆Gij represents the interaction with thejth ionized group.
The evaluation of this term will be considered below.
2.1.2. Interactions between Ionizable Residues.After evalu-

ating the self-energy of each of the ionizable residues (in the
reference system where all other residues are in their neutral
state) we can evaluate the perturbation due to the interactions
between different ionized residues. In other words, after
determining the electrostatic work of bringing a charge to the
neutral protein we may now ask how much does this reversible
work (or free energy) change when other groups are ionized. It
is important to comment that this issue has been frequently
considered to be the main and sometimes the only problem in
electrostatic calculations (perhaps because of the difficulties in
recognizing the importance of the self-energy term), despite the
fact that the charge-charge interaction term is usually rather
small. Nevertheless, it is important to be able to evaluate this
contribution in a practical and consistent way. The approach
used here for this purpose is similar to that used by others37,38,48

and is described in detail below.
Our starting point is the free energy of different charge

configuration that can be expressed as49,50(see a closely related
recent expression in ref 38)

) ∑
i
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(m)Wi
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i*j
Wijqi
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(m)} (8)

Figure 1. Thermodynamic cycle used in calculating the pKa’s of
ionizable residues.∆Gsol

p and ∆Gsol
w designate the corresponding

contributions in protein and solution, respectively.∆Gbond is the energy
of the bond between the acid and the protein, which is assumed to
have the same strength for AH and A-.
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whereqi
(m) is the actual charge of theith group and it can be 0

or -1 for acids and 0 or 1 for bases, andWij is the charge-
charge interaction term that will be discussed below.
With the free energies of all possible charge configurations

we can write

Here we have free energy rather than potential energy in the
partition function but such treatment is still justified as
established by Tanford and Kirkwood11. With the partition
function of eq 9 we can calculate the average of any property
and in particular we can evaluate the average charge by

We can define the pKa by using the value of the pH (pKa )
pHi) where〈qi〉 is the median value of its neutral and ionized
states. In this way we can write

Thus,|qi| ) 0.5 leads to pKa,i ) pHi, and our problem boils
down to the evaluation of〈qi〉. This can be done, at least in
principle, by evaluating eq 10 at the specified pH, while
considering all states of the system. For example, if we have
a protein with two acidic groupsq ) (q1,q2) we will have to
consider the four states (0,0), (-1,0), (0,-1), and (-1,-1). Such
an explicit procedure becomes very expensive when the number
of ionized residues is significant and thus cannot be used in
routine calculations (a possible practical treatment is to use the
Monte Carlo approach of ref 48). Another possibility is to use
the effective charge approximation of Tanford and Roxby,12

where it is assumed that the average charge of each residue
depends on the average charges of all other residues. This
approximation can be expressed as

where we have now only two states (charged and uncharged)
for each residue. Using eq 12, one finds that

whereqji is the charge of theith group in its ionized form (-1
and+1 for acids and bases), respectively, and where AH is
neutral and positively charged for acids and bases, respectively.
Note thatqji is not identical toqi since it cannot be zero.〈qi〉 of
this effective two state model is given by

Now eqs 13 and 14 are solved self-consistently where at each
evaluation of〈qi〉 all the average charges of other residues are
kept at their latest values. Once self-consistency is achieved,
the pKa at theith group is determined as the pH where〈qi〉 )
1/2qji. While eq 14 is quite useful, it is sometimes important to
obtain a less approximate expression that combines the simplic-
ity of eq 14 and the rigor of eq 9. A useful approximation can

be obtained by a hybrid approach37,38where the charges of each
residue are evaluated using

where s designates all the residues within an explicit sphere of
a specified cutoff (R e Rs) around theith residue. Here we
define the configurationms by all the possible ionization states
of the residues within the cutoff range.∆Gs

(ms) is the ap-
proximated effective free energy given by

whereN is the total number of ionizable groups andNs are the
number of groups within the specified cutoff range.
The residues are now numbers fromi (for the reference

residue) toNs. The first term represents the contribution of the
residues withinRs, while the second corresponds to the average
effect of the residues outside the range. With eqs 15 and 16
we can evaluate the pKa of each ionized group provided we
know pKint andWij. The evaluation of the intrinsic pKa has
been described in the previous section, and thus we only have
to address the evaluation ofWij. This interaction term can be
evaluated by explicit PDLD/S or LRA calculations, considering
any given pair of groups and using

This equation is evaluated by calculating the difference
between the free energy of charging Ai when Aj is charged and
the free energy of charging Ai when Aj is neutral. This is done
while placing Ai and Aj in region I and II of the PDLD model,
respectively. The same calculation can be performed by
reversing the role of Ai and Aj, and the agreement between the
two calculated results can serve as a consistency check. The
resultingWij can be rewritten as

whererij is the average distance (in Å) between theith andjth
charge centers and where the energy given is in kcal/mol. This
expression defines the effective dielectric constantεij by

The explicit evaluation of eq 17 is quite expensive and not
justified in most cases. That is, in almost all cases when the
distance between a charge pair is larger than 5 Å, the effective
dielectric constant for charge-charge interaction can be ap-
proximated by a large number between 40 and 80 or by the
function13

A similar function has been used recently in the study of ref
51. In fact, as will be argued in section 3.5, many times theεij
of eq 20 gives more reliable estimates than that obtained by
explicit calculations (it should be clear at this point that the
asymptotic value ofεij at r f ∞ is irrelevant since the
corresponding interaction is zero). Thus, our procedure involves
the use of theεeff of eq 20 except in cases of very strongly
interacting groups, where we use eqs 17 and 19.
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2.2. Calculations of Electrostatic Free Energies.After
defining the free energy terms of pKa

p we have to examine the
most effective ways of evaluating these terms. Basically, we
are dealing with calculations of electrostatic energies in proteins,
and the relative reliability of different approaches is far from
obvious and is in some respect the major subject of this work.
As stated in the previous section, our primary objective is to

produce a reliable strategy for evaluating the self-energy term.
In this work we will examine and discuss the performance of
the PDLD, PDLD/S, LRA, and LRA/S approaches. Since the
details of these three approaches have been discussed in recent
works.14,52 We will discuss below only the main points about
these approaches and their current implementation.
2.2.1. The PDLD Method.The PDLD method8,16,17 was

introduced in the 1970s and has provided an early consistent
way of evaluating electrostatic energies in proteins. The
introduction of this microscopic model was essential in order
to avoid the uncertainties and conceptual problems associated
with the use of the macroscopic models of that time. The PDLD
model was discussed extensively somewhere (see also the
introduction section of this paper and further discussion below).
Here we review only the main aspects of this model.
The PDLD model considers explicitly the proteins/solvent

system with all its electrostatic components. Thus, the effective
potential of a reference charged group is given by

where∆Vqµ
p is the interaction between the charge and the

protein permanent dipoles,∆VqR
p is the interaction between the

charge and the protein induced dipoles,∆Vqq
p represents the

interaction with other ionized groups, and∆Vqw
p is the interac-

tion between the charge and the Langevin dipoles (which
represent the average polarization of the water molecules in and
around the protein).∆Gbulk

p is the solvation energy due to the
bulk solvent, which surrounds the region of explicit solvent
molecules. Early PDLD treatments approximated the free
energy terms associated with each∆V contribution by the
corresponding terms evaluated at the average structure (although
energy minimization that relaxed the protein in different charge
configurations was already implemented in the original work16).
In this approach it has been assumed that solvation free energies
can be represented by considering the effective potential for
interaction between the solute charges and the average polariza-
tion of the solvent (or protein) dipoles. This was done with
the implicit assumption of the LRA, and the resulting effective
energy was considered as∆Gpdld and parametrized accordingly.
More recent approaches14 used the explicit LRA to describe
the protein reorganization by considering the relaxed structures
in both the ionized and neutral states of the relevant charge
(see below).
The∆Vqµ

p term is evaluated by considering the Coulombic
interaction between the given charge and the residual charges
of the protein atoms. These residual charges are assigned
according to the atom type and residue type as described in ref
14. The effect of the protein induced dipoles are evaluated as
described elsewhere14,16by attaching an induced dipole to each
protein atom and evaluating self-consistently the interaction of
these dipoles with the permanent charge distribution of the
system as well as with each other. The solvation of the protein
and its charges by the water in and around the protein is
evaluated by the following procedures. The protein is sur-
rounded by a three-dimensional cubic grid, and each point that
is within a specific van der Waals distance from a protein atom
is deleted. The grid is truncated to a sphere, and each of the
remaining points is occupied by a point dipole that represents

the average polarization of a water molecule at that site. Each
point dipole is allowed to be polarized toward the local field
due to the protein atoms as well as other solvent dipoles except
its nearest neighbors.14 The consistency of this model with the
polarization of water molecules in particular and other dipolar
models in general has been demonstrated and discussed
elsewhere.3,19,20,53 A systematic study that relates dipolar lattice
models to macroscopic models is presented in ref 54. The
original PDLD treatment involved an average over a significant
number of randomly generated grids. Later it was found that
the number of averaging steps can be reduced if the grid points
near the solute surface are converted to a finer grid (1 Å spacing
instead of 3 Å spacing) with a corresponding reduction in the
magnitude of the dipole. This treatment does not necessarily
increase the accuracy of the model (in fact, it makes it less
accurate in treating water molecules in protein cavities), but it
produces more stable results for those who are concerned with
the precision beyond the decimal point.
It has also been found recently that the original approximation

that represents the solvent dipoles by Langevin type dipoles
can be relaxed in many cases without a major loss in accuracy55

(also see below) and with faster convergence. Thus the PDLD
version used in the current work replaces the Langevin dipole
polarization law by

whereêi is the field on theith dipole from its surrounding (with
the exception of its nearest neighbors).RL is the effective
polarizability of the solvent dipole (6.3 Å3 for 3 Å grid spacing),
andn is the iteration number. It is important to recognize that
eq 22 is just an approximation that is found to reproduce well
the more rigorous results of the original Langevin dipoles model.
Apparently this fact is not yet clear.56 Thus we would like to
emphasize that the original LD model is used as one of the
options on POLARIS 6.3 and in some of our most recent

∆Vpdld ) ∆Vqµ
p + ∆VqR

p + ∆Vqq
p + ∆Vqw

p + ∆Gbulk
p (21)

Figure 2. Regions of the protein/solvent system in the PDLD method.
Region I contains the charged groups of interest. Region II contains
the protein atoms found within a radiusR2 from the center. Region III
is the Langevin grid truncated to a sphere of a radiusR3. The inner
part of the grid has 1 Å spacing, and the outer part has a 3 Åspacing.
Region IVa contains the rest of the protein atoms outside region II.
The electrostatic effects of regions I, II, and III are treated explicitly,
while those of region IV (IVa and IVb) are considered as bulk solvent
regions and are treated by a macroscopic continuum formulation. Note
that the protein in region IVa is replaced by bulk solvent.

µi
(n+1) ) RLêi

(n) (22)
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programs (ref 57), and it does give basically the same PDLD/S
results as those obtained by eq 22. The bulk contribution is
evaluated by the continuum approach described in ref 14. Such
an approach has been, of course, implemented in early PDLD
treatments and related approaches and has also been proposed
in other recent studies (e.g. ref 58). The contribution of charge-
charge interaction can be calculated by an explicit use of the
PDLD model (by explicit inclusion of theVqq term), as was
demonstrated repeatedly.17,55 However, in the present work we
prefer to evaluate such contributions in a macroscopic way (see
below). The present version of the PDLD model, as imple-
mented in the program POLARIS, divides the protein/solvent
into three regions as discussed in ref 14 and depicted in Figure
2. This model guarantees the correct treatment of long-range
electrostatic effects by the use of the spherical boundaries19 and
by the implementation of the local reaction field (LRF)
treatment,42 where the interaction between each dipole and its
surrounding is divided into short-range interaction, which is
evaluated each iteration, and long-range interaction, which is
updated only once in 10 self-consistent iterations.
One of the unique features of the PDLD approach is the

consistent treatment of the protein structural relaxation upon
formation of charges (this can be easily accomplished since all
electrostatic contributions are treated explicitly). In the present
treatment we achieve this consistency by combining the
ENZYMIX simulation program and the POLARIS program in
such a way that the PDLD results are averaged automatically
over the relevant MD generated protein configurations. This
is done in the framework of the LRA approach using the
expression14,59

where 〈 〉rp designates an average over protein configurations
generated with the indicated charge (q) and where∆Vpdld is
defined in eq 21. In other words, we evaluate the PDLD energy
of an ionized group by averaging it over configurations
generated with the charge set to its full final value and to its
initial neutral value.
An interesting and crucial element of our averaging procedure

is the fact that protein configurations are generated by MD
simulation of a consistently solvated protein, where explicit
water molecules are present in the protein cavities. This is quite
different than recent proposals and attempts of averaging DC
results over MD runs (e.g. ref 60) in that such proposals
currently do not seem to involve explicit water molecules in
the first solvation shell of the protein and its cavities and
channels. Simulating charged groups by such a model may
suffer from a local collapse of the protein. In our approach the
explicit water molecules keep a consistent protein structure
during the MD simulations and are converted to Langevin
dipoles only after the given configuration is generated. Also,
the PDLD model has been used in the buffer regions of our
all-atom ENZYMIX program.14 An analogous attempt to add
a DC buffer region to MD simulation programs has recently
been made.60 The actual MD simulations involve running
continuous trajectories with 1 fs time steps at 300 K and sending
the protein configuration after each 2 ps segment to the PDLD
module of POLARIS (see Figure 3).
2.2.2. The PDLD/S Model.The PDLD model provides large

microscopic contributions, and the final solvation energy
involves very significant compensation effects. Obtaining this
compensation is a major challenge that is essential for true
understanding of electrostatic energies in proteins.45 Yet it
might be beneficial to obtain more stable results by scaling the
microscopic contributions, provided the scaling can be done in

a consistent manner, as done in the semi-microscopic PDLD
or the scaled PDLD/S approach introduced by Warshel et al.18

The method, which is described in detail by Lee et al.,14 assigns
to the protein a “dielectric constant”,εp, that represents the
contributions that are not included explicitly in the model44 (as
will be argued in section 3.4, thisεp has little to do with the
true protein dielectric constant but serves mainly as a scaling
factor). The PDLD/S effective potential is obtained from the
PDLD energy contributions and is given by14

where∆Gqw
w is the self-energy of the given charge in water

(the∆Gself
w of eq 3), the∆Gqw

p term represents the change in the
solvation energy of the protein with and without the charged
group, and∆Vqq

p and ∆Vqµ
p are the same terms used in the

PDLD expression of eq 20. As in the case of the PDLD
treatment, we consider the∆V as free energy when we use a
single protein configuration, but we consider it as an effective
potential when we average over protein configurations in the
more rigorous LRA treatment.
Our PDLD/S approach is implemented in the LRA framework

in the same way as the PDLD method described in the previous
section. That is, we evaluate the PDLD/S free energy using

where the average is obtained in the same way as the
corresponding average in eq 23.
The PDLD/S has features similar to current DC models

(which treat the protein dipoles explicitly) since it also assigns
a “dielectric constant” to the protein. However, the consistent
LRA treatment of the PDLD/S method is not yet implemented
in DC models. Sinceεp represents only the factors that are not
treated explicitly, theεp of the PDLD/S method is expected to
be smaller than that of the DC models. This point will be
considered in section 3.4 and in the Discussion section.
2.2.3. The LRA and LRA/S Approximations.Although the

simplified solvent models described above seem to give
reasonable results, it is important to relate the relevant energy
contributions to the corresponding results obtained by the more
rigorous all-atom model. In fact the most rigorous results should
in principle be obtained by free energy perturbation (FEP)
approaches using all-atom solvent models (e.g. refs 61, 62). Such
approaches were used in the first FEP calculations of pKa’s and
electrostatic energies in proteins,40 and in subsequent studies,14,42

but they are not the subject of the present work. What we like
to accomplish here is to use all-atom approaches only as a way
to establish the consistency of our semi-microscopic treatment.
The simplest and most direct way of relating all-atom to
simplified solvent models is the linear response approximation
(LRA). That is, simulation studies have indicated that the linear
response approximation (which is the basis of macroscopic
electrostatic models) is valid even on a microscopic level both
in solution53,63-65 and in proteins.24,43,61,66,67

When a system can be described as a collection of harmonic
oscillators and therefore follows the LRA approximation, one
can use the relationship67-69 (see also ref 65 for a related
derivation)

∆Gpdld ) 1
2
[〈∆Vpdld〉r (q)0)

p + 〈∆Vpdld〉r (q)qj)
p ] (23)

∆Vpdld/s
wfp ) -[∆Gqw

w + (∆Gqw
p (q)qj) -

∆Gqw
p (q)0))](1εp - 1

εw) + (∆Vqq
p (q)qj) + ∆Vqµ

p (q)qj)) 1
εp

(24)

∆Gpdld/s) 1
2
[〈∆Vpdld/s〉r (q)0)

p + 〈∆Vpdld/s〉r (q)qj)
p ] (25)

∆GAfB ) 1
2
(〈VB - VA〉A + 〈VB - VA〉B) (26)
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whereVA andVB are the potential energies of the system in
state A and B, respectively. This equation in the case a single
ion (whereVA ) 0) is converted to the familiar result of∆G)
(1/2)〈VA〉B,3,65 which, of course, is identical to the continuum
results. The more general form of eq 26 is not so widely known,
and its validity for treatment of ionized groups in proteins and
other properties is of significant current interest.14,52,65,66,68

Furthermore, our motivation in exploring the LRA model is
associated with its close relationship to other electrostatics
models. In particular we would like to establish in this work
the close relationship between the LRA and PDLD models. This
point will be demonstrated in the Results section.

The LRA approximation is related to the corresponding FEP
treatment (it is just the initial and final integration points in the
FEP approach). Thus, one can assume that if the LRA
reproduces the FEP results it would give the exact pKa’s.
Unfortunately, both the LRA and FEP methods involve major
convergence problems and require correct treatment of long-
range effects and boundary conditions. One of the most
effective ways of obtaining reliable results with a limited number
of solvent molecules is the use of spherical boundary conditions
with special surface constraint.3,19 Such constraint should force
the finite system to behave as the corresponding region in an
infinite system. The present version implemented in the
program ENZYMIX14 is the surface-constrained all-atom solvent
(SCAAS) model.19 This approach emphasizes electrostatic
constraints, forcing the polarization of the finite system in
response to the field of internal charges, to approximate the
polarization of the infinite system.29 Alternative approaches70

emphasize correct heat transfer between the system and its
surroundings but do not guarantee that the electrostatic response
of the finite system will follow that of the complete system. It
is also important to recognize that the frequently used periodic
boundary conditions do not have the proper symmetry for the
treatment of ions.8

The present SCAAS version focuses on obtaining a reliable
treatment of long-range forces. This is accomplished by
dividing the protein/solvent system into regions as described
in detail elsewhere14 and by using the local reaction field (LRF)
method.42 The LRF method allows one to evaluate the results
that would have been obtained without any cutoff, while using
a relatively small cutoff. Thus, in contrast to many of the
available simulation packages, the SCAAS provides a proper
electrostatic treatment without the pathologic effect of truncation
of long-range forces. It is instructive to point out in this respect
that the SCAAS treatment does not only represent the protein
and a limited number of water molecules as seems to be implied
by ref 43, but considers the protein and an infinite number of
water molecules, where some of these solvent molecules are
represented explicitly while the outer regions are represented
by Langevin dipoles surrounded by a bulk solvent (which is
represented by a reaction field model). Such a representation
is in fact the new direction in some recently developed
approaches.58 At any rate, this work examines the effect of
the long-range treatment on the reliability of pKa calculations.
The force field used in the present simulation is the standard

ENZYMIX force field, which has been described in detail
elsewhere.14 The van der Waals parameters for carboxyl
oxygens were modified, however, to account for the use of
induced dipole forces (ref 14 considered the energy of induced
dipoles but ignored, in most cases, the corresponding induced
forces so that the induced energy could be evaluated once in
10 MD time steps), and the present values are 1070.0 Å6 kcal1/2

mol-1/2 and 25.0 Å3 kcal1/2 mol-1/2, respectively, for the A and
B parameters of a negatively charged oxygen atom.

2.2.4. Calculating Charge-Charge Interaction and Ionic
Strength Effects.As explained in section 2.1.2, we treat the
interaction between ionized groups on a macroscopic level, and
only in specific cases, when a given interaction is expected to
be large, do we evaluate the microscopic estimate of this
interaction. In our macroscopic model we use Coulomb’s law
and the effective dielectric constant,εeff, of eq 20. It seems to
us that the use of Coulomb’s law with a large dielectric constant
is more justified than the customary DC treatment that involves
a small protein dielectric constant. In particular, we believe
that the charge-charge interaction in most DC calculations is
largely overestimated when these charges are in the interior of
proteins (when the charges are near the surface, the results are
almost independent of the value ofεp and the effectiveε is large
due to the compensating effect of the solvent). This problem
is probably the reason that recent studies71 were forced to use
large values forεp. Further discussion and examination of this
issue will be given in subsequent sections.
When two ionizable groups are in very close proximity, it

might be useful to evaluate the relevant∆Gij explicitly by the
PDLD/S procedure, rather than to use ourεeff. In doing so we
go beyond what is done in current DC treatment and allow the
protein to reorganize during the charging process. That is, when
we evaluate the∆Gij of eq 17, we use the LRA approach. This
treatment reflects automatically the structural relaxation of the
proteins and allows one to use smaller and more consistent
values ofεp than what is needed otherwise.
In treating the effect of ionic strength we use a fully

macroscopic model, following a previously described proce-
dure.14 This procedure, which is largely based on an approach
of Pack and co-workers,72 places fractional charges on a grid
in the solvent region and evaluates the corresponding probability
using a Boltzmann distribution. The interaction between the
fractional charge is evaluated with theεeff of eq 20. Some recent
aspects of this procedure are described in ref 55, and a validation
study is described in ref 14.

3. Results

This section examines the performance of our models for pKa

calculation and focuses on the results of the PDLD/S model,
which is closest in spirit to recent DC methods.
3.1. The Semi-microscopic PDLD/S Approach and Cur-

rent DC Models. The earliest consistent evaluation of pKa’s
in protein involved the PDLD study of Asp52 and Glu35 in
lysozyme.9 This was followed by FEP and LRA studies.40,41,43

The evaluation of the pKa’s of all ionizable groups in lysozyme
has recently become a benchmark for pKa calculations.33,43,65,73

While we believe that better benchmarks must reflect more
emphasis on cases with large pKa shifts, we felt that it is useful
to address this specific benchmark due to its current popularity.
Thus we focus here again on the pKa of the ionizable acids of
lysozyme. The starting points for our calculations are the crystal
structures of the triclinic (2LZT) and the tetragonal (1HEL)
forms of the protein.74,75 Using these two starting points is a
useful way of examining whether the given procedure is able
to sample the relevant phase space of the proteins (a perfect
approach should give similar results regardless of the starting
point). The PDLD/S results are presented in Tables 1 and 2
and compared to the DC results37,73 in Table 3. As seen from
the Table 3 we obtain an improved agreement relative to DC
studies where the rms deviation of the PDLD/S model is 0.73
pKa units as compared to the deviation of 2.07 and 1.58 pKa

units in refs 37 and 73 respectively. This is, however, not the
main point of the present work since statistical agreement by
itself might be quite misleading (see Discussion section), and
even physically inconsistent models can give very good results
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when the relevant data set involves mainly surface groups. This
is reflected by the fact that even the “null” model that assumes
a very large dielectric for the protein, or∆pKa ) 0, will give a
small statistical error.13,71 However, such a model should not
be trusted when one deals with ionizable groups in the interiors
of proteins and when the corresponding pKa shifts are large. In
such cases one expects significant problems from DC models
despite the fact that the current versions of most of these models
consider explicitly the microscopic effect of the protein per-
manent dipoles. The main problem is associated with the
missing contribution of the orientational polarization of the
protein permanent dipoles to the self-energy of ionized residues.
This contribution is in general different in different sites of the
protein and cannot be represented by a single dielectric constant.
This problem does not exist in the PDLD/S treatment since the
effect of dipolar relaxation upon formation of charges is taken
automatically and consistently into account by the use of eq

25. The PDLD/S model gives smaller differences between pKa’s
obtained from different starting configurations since the average
over MD generated structures is more consistent. This point
can also be examined by considering Figure 3, which describes
the convergence of our approach as a function of the MD
relaxation procedure.
3.2. The Relationship between the LRA and PDLD

Models. Although the PDLD/S approach yields encouraging
results, it is important and in fact crucial to examine more
microscopic approaches. A step in this direction is taken by
the examination of the PDLD and LRA and the corresponding
LRA/S and PDLD/S results, which are summarized in Table 4.
Apparently, as can be seen by inspection of Table 3, the

microscopic calculations are at present less accurate than the
LRA/S and the PDLD/S results as far as the lysozyme
benchmark is concerned (for example, the situation is quite
different in the case of highly charged iron-sulfur clusters.76
However, this is related to the previously mentioned difficulties

TABLE 1: Contributions to the PDLD/S Free Energies and the Corresponding Calculated pKa’s for 1HEL a

residue ∆Gqµ
p ∆Gqw

p ∆Gbulk
p ∆Gp ∆Gqw

w ∆∆G pKint
p ∑∆Gij

b pKa
calc pKa

obs

7 -4.2 -10.6 -2.0 -16.8 -17.7 0.8 4.9 -1.4 3.5 2.6
18 -8.9 -7.7 -2.1 -18.7 -17.9 -0.8 3.3 -0.9 2.5 2.8-3.0
35 -2.5 -8.8 -2.1 -13.4 -17.1 3.7 7.0 -0.5 6.4 6.1
48 -6.9 -8.2 -1.9 -17.1 -18.0 0.9 4.6 -1.0 3.6 4.3
52 -5.4 -8.1 -2.1 -15.6 -17.5 1.9 5.3 -0.1 5.2 3.5-3.7
66 -13.0 -3.4 -2.1 -18.5 -17.8 -0.7 3.5 -0.3 3.1 1.5-2.5
87 -6.1 -9.9 -2.0 -18.0 -17.7 -0.3 3.7 -0.5 3.2 3.5-3.8
101 1.7 -14.5 -2.0 -14.9 -17.5 2.6 5.8 -1.3 4.5 4.0-4.3
119 -7.7 -8.5 -2.0 -18.1 -17.4 -0.7 3.4 -1.0 2.5 2.2-2.8

aNotation as in eqs 21 and 24 but the∆V are replaced by∆G since the corresponding terms are evaluated by eq 25. Each∆G term corresponds
to the process AHf A- in the designated environment. Energies in kcal/mol where each contribution to∆∆G is already scaled by 1/εp with εp
) 4. Observed values are taken from ref 93.b The contribution of the interaction with all other ionizable residues evaluated in each case for pKa)
pH.

TABLE 2: Contributions to the PDLD/S Free Energies and the Corresponding Calculated pKa’s for 2LZT a

residue ∆Gqµ
p ∆Gqw

p ∆Gbulk
p ∆Gp ∆Gw ∆∆G pKint

p ∑∆Gij
b pKa

calc pKa
obs

7 -8.1 -8.1 -2.0 -18.2 -17.6 -0.6 3.9 -1.4 2.5 2.6
18 -6.8 -9.8 -2.0 -18.6 -18.1 -0.5 3.6 -1.1 2.5 2.8-3.0
35 -4.4 -8.4 -2.1 -14.9 -17.3 2.4 6.1 -0.8 5.3 6.1
48 -5.4 -8.1 -2.0 -15.5 -17.3 1.9 5.3 -0.7 4.6 4.3
52 -7.5 -6.9 -2.1 -16.5 -17.8 1.3 4.9 -0.3 4.6 3.5-3.7
66 -12.0 -3.7 -2.0 -17.7 -17.5 -0.2 3.8 -0.3 3.5 1.5-2.5
87 -7.4 -9.3 -2.0 -18.6 -17.6 -1.0 3.2 -0.7 2.5 3.5-3.8
101 4.6 -15.2 -1.9 -12.5 -17.5 5.0 7.5 -1.0 6.5 4.0-4.3
119 -7.6 -7.8 -1.9 -17.3 -16.9 -0.5 3.6 -1.1 2.5 2.2-2.8

aNotation as in eqs 21 and 24 but the∆V are replaced by∆G since the corresponding terms are evaluated by eq 25. Each∆G term corresponds
to the process AHf A- in the designated environment. Energies in kcal/mol where each contribution to∆∆G is already scaled by 1/εp with εp
) 4. Observed values are taken from ref 93.b The contribution of the interaction with all other ionizable residues evaluated in each case for pKa

) pH.

TABLE 3: Calculated pKa’s for Acidic Groups in Lysozyme
Obtained by the PDLD/S and Related Macroscopic Modelsa

DC methods deviations

residue pKa
b pKa

c
PDLD/S
pKa

d
exptl
pKa

e ∆pKa
b ∆pKa

c ∆pKa
d

7 1.7(0.9) 3.6(1.0) 3.0(1.0) 2.6 -0.9 1.0 0.4
18 2.9(0.5) 3.1(1.8) 2.5(0.0) 2.8-3.0 0.0 0.2 -0.4
35 6.3(0.1) 3.2(1.2) 5.9(1.1) 6.1 0.2-2.9 -0.2
48 1.3(0.6) 1.8(0.1) 4.1(1.0) 4.3 -3.0 -2.5 -0.2
52 7.8(1.5) 4.6(0.8) 4.9(0.6) 3.5-3.7 4.2 1.0 1.3
66 2.0(0.5) 0.7(3.4) 3.3(0.4) 1.5-2.5 0.0 -1.3 1.3
87 1.0(0.4) 2.2(0.1) 2.9(0.7) 3.5-3.8 -1.7 -1.5 -0.8
101 6.1(3.6) 2.6(0.6) 5.5(2.0) 4.0-4.3 1.9 -1.6 1.3
119 2.3(1.9) 3.7(0.2) 2.5(0.0) 2.2-2.8 -0.3 1.1 0.0

a The two values reported are, respectively, the average obtained
for the triclinic and tetragonal crystal structures and in parentheses the
difference between the calculated results for the two crystal structures.
b Average calculated results of ref 37 for the triclinic and tetragonal
structures.cAverage calculated results of ref 73 for MD relaxed triclinic
and tetragonal structures.dAverage calculated PDLD/S results obtained
in the present work for triclinic and the tetragonal structures (1HEL
and 2LZT).eData from ref 93.

Figure 3. Convergence of the calculated pKa’s as a function of the
number of MD relaxation runs (each run took 2 ps). The figure
represents the PDLD/S results of eqs 7 and 25 for Asp18 and Glu7
using both the triclinic (open symbols) and the tetragonal (filled
symbols) structures. The figure demonstrates how we obtain similar
pKa’s after allowing the protein to relax despite starting from different
crystal structures.
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of obtaining a small error range in microscopic approaches that
involve large opposing numbers. Yet the precision of micro-
scopic models might not reflect their true accuracy particularly
in cases of large pKa shifts (see Discussion section). While we
are continuously looking for ways to increase the accuracy of
the LRA and PDLD methods, the main point of the present
analysis is related to the very close similarity between the LRA
and PDLD energy contributions, which is demonstrated in
Figure 4.
The finding that the PDLD and LRA contributions are so

similar is perhaps the best way to establish that the PDLD is
indeed a microscopic rather than macroscopic model and also
to demonstrate the meaning of a microscopic approach.
As far as the LRA results are concerned, while the agreement

between the calculated and observed pKa’s is far from being
satisfactory, it represents some improvement over the results
obtained in the study of ref 43, probably because of the
improved treatment of long-range effects and the inclusion of
induced dipoles. The effect of including the LRF treatment and
induced dipoles is illustrated in Table 5.
Finally, one of the most instructive points that emerge from

the present analysis is the fact that the LRA/S and PDLD/S
methods give similar agreement with the observed pKa (Table
4). This illustrates our point that the accuracy of semi-
microscopic models has less to do with the continuum treatment
and more to do with the scaling byεp. That is, both the PDLD
and LRA models are less accurate than the corresponding scaled
models because the scaling reduces the problems associated with
the need to obtain compensation of large energy contributions.45

3.3. Interaction between Ionizable Residues.The calcu-
lated pKa’s reported in Tables 1 and 2 reflect the effect of
interactions between ionized residues that change their ionization
state upon change in pH. Thus, the coupling between the
ionizable residues should be reflected by the corresponding
titration curve. Figure 5 represents single-residue titration curves
when the∆Gij are artificially reduced by increasing the effective
dielectric constant,εeff. Although the curves show a modest
change upon change ofεeff, it seems to us that in many cases it
would be quite difficult to deduce the magnitude of the∆Gij

from comparison of the shape of calculated and observed
titration curves. This is due to the fact that such curves may
reflect the effect of many residues and that sometimes an
overestimate of∆Gij (by underestimatingεij) can be compen-
sated for by a shift in the ionization states of the residues
involved. Much more unique results are obtained from mutation
experiments where one of the interacting groups is mutated and
the ionization state of other groups is determined by NMR or
related techniques. Mutation experiments have indicated repeat-

edly that the effective dielectric,εeff, for charge-charge interac-
tions in proteins is large even when these groups are buried in
protein interiors (for example, see discussion in ref 39).
Unfortunately, DC methods with smallεp may underestimate
εeff and overestimate the corresponding∆Gij. This point is
illustrated in Table 6 when we evaluate∆Gij with and without
protein relaxation. Table 6 focuses on the largest interaction
in the system. The most instructive result of the table is
associated with the interaction between Asp52 and Glu35. The
interaction is reduced drastically from the unrelaxed value of
6.1 kcal/mol to a relaxed value of 2.6 kcal/mol. Interestingly,
the experimental estimate of this interaction (see ref 77) is
around 1.8 kcal/mol. As is obvious from our analysis, neglect-
ing the relaxation leads to large values of∆Gij and forces one
to use large values ofεp.
In order to further illustrate this point, we performed PDLD/S

calculations of the interactions between Asp210 and Glu213 of
the reaction center ofsphaeroides39with and without relaxation
(I. Muegge, personal communication). It was found that∆Gij

is reduced from 7.5 to 3.2 kcal/mol when the protein is allowed
to relax. This corresponds to an increase ofεeff from ∼7 to
∼16. The above discussion does not exclude special cases when
ion pairs are strongly stabilized by their local environment (for
example, see discussion of Cys-‚‚‚His+ ion pair in papain61 and
Asp-‚‚‚Arg+ in aspartate aminotransferase78). However, all
these important cases are exceptions rather than rules, as they
reflect investment of folding energy that is used to create such
functionally important ion pairs.
To prevent misunderstandings, we would like to clarify that

we consider a direct evaluation of∆Gij for groups that are far
apart a somewhat unneeded calculation considering the fact that
the corresponding interactions are always close to zero (a fact
that is properly captured by eq 20). The ability of eq 20 to
reproduce experimental results has been repeatedly established
in our studies and in those of others (see below), and the
question is not whether eq 20 reproduces eq 19 or the
corresponding DC results but whether eq 20 reproduces
experimental facts. Of course, one would like to establish that
eq 19 and explicitly evaluated∆Gij give small interaction
energies, and we have reported such studies before,17,76but this
is basically a challenging test of the stability of the explicit
calculation of charge-charge interactions and not an essential
procedure of proving the established fact that these interactions
are small and well described by a large effective dielectric
constant.
3.4. The Meaning of Protein Dielectric “Constant”. The

meaning of the “dielectric constant” of proteins has been
discussed and analyzed repeatedly (e.g. refs 3, 8), but it still
seems to be partially misunderstood and sometimes considered
an unimportant semantic issue. Thus, we use the opportunity
offered by the present study to reiterate our perspective on the
conceptual and practical aspects of this important subject. We
will start by summarizing our main points: (i) The physics of
enzyme active sites is associated with a polar environment with
partially fixed (constrained) permanent dipoles2 that cannot be
captured by using a uniform dielectric medium as originally
conceived by TK and other early workers. (ii) The value of
the “uniform” constant,εj, that is obtained from the fluctuations
of the total dipole moment of protein regions near charges or
in active sites does not correspond to a nonpolar environment.
(iii) The dielectric constant,εp, used in current DC models or
in our PDLD/S model has little to do with the protein dielectric
constantεj. All of these points were raised first in our earlier
works (e.g. refs 3, 8), and some of them have now been accepted
and sometimes adopted and restated. Nevertheless, we will
elaborate here on these points.

TABLE 4: Calculated pKa’s for Acidic Groups of Lysozyme
Obtained by the LRA, LRA/S, PDLD, and PDLD/S Modelsa

residue
LRA
pKa

LRA/S
pKa

PDLD
pKa

PDLD/S
pKa pKa

obs

7 3.0(6.7) 3.5(1.9) 2.4(2.4) 3.0(1.0) 2.6
18 3.0(2.0) 4.0(1.0) 1.6(0.6) 2.5(0.0) 2.9
35 9.2(0.0) 6.5(0.1) 4.3(0.6) 5.9(1.1) 6.2
48 6.0(0.0) 3.5(0.1) 4.1(1.6) 4.1(1.0) 4.3
52 5.6(3.1) 5.9(0.4) 3.6(0.4) 4.9(0.6) 3.6
66 2.6(7.2) 3.5(2.0) -0.3(0.2) 3.3(0.4) 2.0
87 0.6(1.1) 3.0(1.2) 0.1(1.5) 2.8(0.7) 3.6
101 3.1(2.6) 3.5(0.0) 3.3(4.5) 5.5(2.0) 4.1
119 1.6(5.2) 3.5(2.0) 2.2(0.7) 2.5(0.0 2.5

a The two values reported are, respectively, the average obtained
for the triclinic and tetragonal crystal structures and in parentheses the
difference between the two calculated values. The LRA/S and PDLD/S
results are obtained withεp ) 4. The observed values are taken from
ref 93.
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It is important to be clear about the meaning of the “true”
“protein dielectric constant”,εj. First of all, there is no such
“homogeneous” dielectric constant that can be assigned to all
parts of a protein. The macroscopic measurements of protein
dielectric constants reflect only the fluctuating part of protein
polarity, and they do that only in theaVeragesense; that is,
they contain no information about fluctuations in any particular
part of the protein molecule. The value of thisεj in regions
near ionizable residue is significantly larger than the valueεj =

2, that was used in many early studies, and even the “upgraded”
value of εj = 4, which already corresponds to a fairly polar
environment, does not describe properly the actual value ofεj.
Careful simulations44 revealed that in active sites or even sites
around an ionized residueεj > 8. In special cases when the
protein is designed to destabilize charges (e.g. the heme charges
in cytochromec) or in regions far from ionized groups one can
find relatively smallεj.44,52,79,80 However, in generalεj does not
correspond to the dielectric constant of a nonpolar environment

Figure 4. Comparing the PDLD (white) and LRA (black) free energy contributions for different ionizable groups of lysozyme. The calculations
are done using the tetragonal crystal structure.
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(i.e.εj = 2) or even toεj = 4, and simulation studies36 that obtain
ε ≈ 4 have apparently omitted the effect of the reaction field
around the protein that drastically increasesεj (see discussion
and demonstration of this point in Figures 2 and 5 of ref 44).
Similarly, attempts to attribute the large value ofεj obtained by
reliable simulations81 exclusively to ionized surface groups are
not justified. That is, the consistent calculations of ref 44
producedεj ≈ 9 in the active site of trypsin without any ionized
surface groups (to the best of our knowledge this point has not
been examined by other consistent calculations that include the
solvent around the protein). Thus, the correctεj for proteins
can be significantly larger than the small value favored by those
who view proteins as low dielectric environments.
At this point, it is crucial to remember that the dielectric

constantεj does not represent a linear measure of polarity. Such
a measure is more properly provided3 by (1- 1/εj). Therefore
even εj ) 4 represents a fairly polar environment in the
“macroscopic” dielectric sense. However, the issue of protein
polarity cannot be properly addressed solely by conventional
continuum dielectric concepts because of the preorganized nature
of the dipoles within the protein. This fact should be self-
evident because proteins often have to provide better solvation
than the surrounding water,2 and that would correspond to
unphysical, negative dielectric constants (because of the high
dielectric constant of water and the approximate proportionality
of solvation to (1- 1/εj)). Instead, large solvation energies are
provided by a combination of “nonpolar” dielectric constants
and preoriented dipoles. The important message here is that
neither{homogeneous, low dielectric+ preoriented dipoles}
nor {high dielectric over the whole protein} pictures can offer
consistent explanations of protein polarity. Also, due to both
the inhomogeneous and preoriented nature of the interior of a
protein, the apparent “dielectric constant” depends on the
property studied3 and on the specific site and cannot be
represented consistently by a single value. Nevertheless, one
may still wonder, what is the origin of the reasonable results
obtained with the DC and PDLD/S models that use a small value
of εp? The answer to this important question has been given
before (e.g. refs 8, 44), but it perhaps needs to be restated. The
optimal εp is not the elusiveεj, but simply a parameter that
represents contributions that are not included explicitly. To see
this point, one can start from a model where all the microscopic
effects are considered explicitly. In this case obviouslyεp )
1. Now if only the induced dipoles are not included explicitly,
we will have εp ) 2, and if the entire protein and water are
treated implicitly, thenεp g 40.8,44 With this point in mind we
may wonder, what is the optimalεp when the induced dipoles
and the protein relaxation are included implicitly and when
internal and external solvent molecules are represented by a
DC model?82 The answer to this question is not unique since
it obviously depends on the specific reorganization in each site.
In the PDLD/S model we avoid a significant part of this issue
by treating explicitly the reorganization of the permanent
dipoles.

3.5. The Meaning ofEeff. This work and many of our earlier
works use theεeff of eq 20 to estimate interactions between
ionized residues. The large values ofεeff does not reflect
arbitrary assumptions but rather are the results of a long series
(see for example pages 347-364 in ref 3) of computational and
theoretical studies and their experimental verifications, including
rather rigorous and physically consistent PDLD and FEP
calculations (e.g. refs 17, 76). Despite these works it seems
that the underlying microscopic physics ofεeff is not fully
appreciated (see commentaries in refs 84 and 85). Some might
assume thatεeff simply reflects the effective interactions obtained
by a macroscopic model with smallεp in the protein region
and high dielectric constant for the solvent region or, in other
words, thatεeff only reflects the effect of the solvent around
the protein. Such an approach might reflect in fact the confusion
between the rigorous results of anassumedmodel and the actual
physics of a real protein.85 It is important to understand that
microscopic considerations of charge separation are the only
way to understand the origin ofεeff. Such considerations do
show that εeff reflects the compensation between vacuum
charge-charge interaction and the protein reorganization and
solvent penetration, as described in Figure 27 of ref 3. That is,
εeff reflects reorientation of the protein dipoles that cannot be
captured by macroscopic concepts, where the compensation is
assumed rather than obtained.

TABLE 5: Calculated pKa’s for Acidic Groups of Lysozyme
Obtained by the LRA Models with Different Treatments of
Long-Range Effects

residue pKa
a pKa

b pKa
c pKa

d pKa
e

7 2.7 3.8 6.0 3.0 2.6
18 3.5 -3.8 -1.3 3.0 2.8-3.0
35 8.9 -1.8 1.6 9.2 6.1
48 -2.6 2.4 4.4 6.0 4.3
52 -4.4 -2.0 -1.3 5.6 3.5-3.7
66 0.8 3.5 2.8 2.6 1.5-2.5
87 -2.8 -2.7 -1.8 0.6 3.5-3.8
101 13.7 9.1 5.3 3.1 4.0-4.3
119 2.2 -6.2 -6.1 1.6 2.2-2.8

aCalculated results of ref 43 for the triclinic structure with 15 Å
cutoff. bCalculated using a cutoff of 8 Å without LRF long-range
treatment and also without including the induced-dipole forces in the
simulations. Simulations were done for the tetragonal crystal structure.
cCalculated with the LRF treatment without the induced dipole forces.
d The results present the average for the triclinic and tetragonal crystal
structures. Calculated with induced-dipole forces and with the LRF
treatment.eData from ref 93.

Figure 5. Titration curves for Asp52 with (square) and without the
∆Gij interaction term, calculated by the hybrid approach described in
section 2.1.2 using an effective dielectric function of 40 (diamond),
80 (triangle), andεij ) εeff ) 1 + 60[1 - exp(-0.1rij)] (cross).

TABLE 6: PDLD/S Estimates of the Coupling between
Some Ionizable Residues in Lysozymea

interaction free energy

residue pair unrelaxed relax

35-52 6.11 2.57
48-52 1.57 0.74
52-66 2.33 1.91

a The calculations were done starting from the tetragonal crystal
structure (1hel) considering only pairs with unrelaxed interaction of
more than 1 kcal/mol. Interaction energies are given in kcal/mol.
Unrelaxed and relaxed designate the results obtained using the original
crystal structure and the results obtained with MD relaxation of the
charged and uncharged forms. The relaxed results were averaged over
eight configurations obtained at 2 ps intervals.
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4. Discussion

Calculations of pKa’s of ionizable groups in proteins present
a major challenge. On the one hand, microscopic approaches
suffer from convergence problems since they involve large
opposing contributions, and on the other hand, fully macroscopic
models cannot take into account correctly the protein microen-
vironment.13 Recent DC methods that treat the local environ-
ment in a semi-microscopic way seem to provide reasonable
pKa values, but these methods still suffer from a fundamental
inconsistency since they do not take into account the protein
relaxation upon the charging process and this relaxation cannot
be represented by a single unique dielectric constant. The best
way to realize this point is to consider a case where crystal
structure was obtained at a pH where a given ionizable group
is in its neutral state and where the dipoles around this group
are not pointing toward it. A DC calculation that uses the crystal
structure will miss the effect of reorganization of the local
dipoles upon ionization of the given group. In this case, we
will not have any “back field” (theVqµ term of eq 21 will be
zero), and accounting for the missing effect of the local dipoles
will require a high value ofεp. Unfortunately, this largeεp will
not correspond to theεp in sites where the ionizable groups are
ionized in the crystallization process. If, on the other hand,
one could take into account the microscopic reorganization
process, one should be able to consistently use a small value of
εp that will only reflect the missing induced dipoles and perhaps
incomplete penetration of solvent molecules.44 The present
paper presents the results of the semi-microscopic PDLD/S
methods that treat the protein reorganization effect in a
consistent way. Although it is very hard to obtain perfect results
in pKa calculations, it appears that the PDLD/S approach is not
only more consistent but also gives somewhat better results than
current alternative DC models (this point will be further
discussed below). It is useful to note, in this respect, that using
a consistent approach also reduces the difference between the
results obtained for different crystal structures, as is established
in Table 3 and Figure 3.
This work reemphasizes the crucial role of self-energy of the

ionizable residues in proteins.3,13 Although this factor is starting
to be widely appreciated (e.g. refs 38, 43), it is still not
uncommon to see in the literature assumptions implying that it
is a relatively small, second-order effect.86 However, as has
been established in our early estimates (e.g. refs 13, 17) and in
any correct subsequent studies, the self-energy of an ionized
acid in the interior of a hypothetical nonpolar protein would be
around 35 kcal/mol (∼25 pKa units) smaller than in water. Such
an enormous shift in pKint is what would be obtained for internal
ionizable groups that are treated by DC models that do not
include explicitly the protein permanent dipoles. As a case in
point it is useful to consider the calculations presented in Table
7, which present the pKa shifts that would have been obtained

if lysozyme were an entirely nonpolar protein and if no
relaxation and water penetration were allowed. As seen from
Table 7, even in this case (where many ionizable groups are
not far from the surface) we have very large pKa shifts. Of
course, one may argue that many ionizable residues are usually
located near the surface of proteins, and therefore, models that
treat protein as a nonpolar environment are not so unrealistic.
However, the point in developing models for pKa calculations
in proteins is the elucidation of the electrostatic energy of groups
with large pKa shifts that are located deep in protein interiors,
rather than the trivial issue of finding that the pKa’s of surface
groups are not shifted significantly (where any model, including
entirely incorrect models, would work13). Finally, since the
issue of self-energy might seem now rather obvious, it is
important to realize that this term was missing in the pioneering
TK work; theBkk term in this work did not include the radius
of the ionized group but the radius of the protein (see ref 13).
The relationship between pKa and protein conformations has

been the subject of recent discussion (e.g. refs 38, 83, 87, 88).
It has been argued that the large differences between pKa’s
calculated using different crystal structures indicate the impor-
tance of conformational effects.37 It was also argued that
accounting for the protein conformational flexibility should
allow one to use a “physically reasonable” low dielectric
model.83,87 There are, however, some problems with the
perspective of these proposals. pKa simply reflects the average
effect (free energy) of all the relevant conformations. Thus,
the issue is how to obtain an average rather than pointing out
(correctly) that the energy values used in the averaging
procedure depend on the corresponding structures. Furthermore,
taking different crystal structures at their face value will, of
course, produce large pKa changes. However, these results will
not correspond to the actual pKa measured in the given crystal
(if such measurement is made possible), which would reflect
the relaxation of the local dipoles upon ionization. This
relaxation effect is reproduced by our LRA approach and can
also be obtained directly if the crystal structure of the protein
in its ionized and neutral forms are known. A related study of
the reorganization energy of cytochromec was reported
recently.52 At any rate, when the proper local relaxation is
considered, one should expect a smaller difference between the
pKa’s of different crystal structures, as is indeed the case in the
present work. Another closely related issue is the above
mentioned suggestion that averaging over protein configurations
will lead to a more consistentεp.83,87 It seems to us that
conformational averaging by itself should not lead to any
improvement in the calculated values except in providing more
robust results. What is needed (as was argued and already
demonstrated in our previous works59,89and in the present work)
is MD averaging on the ionized and neutral states. Such a
consistent implementation of the LRA approach allows the use
of smaller value ofεp. However, this has less to do with more
physically consistentε’s (see section 3.4) and more to do with
having more effects treated explicitly.
There is apparently still some interest in implying that the

PDLD model must have been fundamentally changed (perhaps
reflecting the fact that this model appeared so early in the
development of the field). However, no fundamental concept
has been changed in this model which is basically a model, of
explicit dipoles on a grid. The model has been reparametrized
in different versions and refinement states, as should be done
with any microscopic model (for example, see repeated refine-
ment of all current MD force fields) and even with macroscopic
models. Perhaps it is very hard to realize what dipolar models
are all about without trying them and seeing their robustness
and insensitivity to details (of course with proper parametriza-

TABLE 7: Calculated Intrinsic p Ka’s for a Hypothetical
Nonpolar Lysozymea

residue ∆Gqw
p ∆Gbulk

p ∆Gp ∆Gw pKa,int

7 -24.0 -4.0 -28.0 -35.2 9.5
18 -23.0 -4.0 -27.0 -35.1 9.8
35 -19.8 -4.0 -23.8 -35.3 12.6
48 -19.3 -4.0 -23.3 -34.4 11.9
52 -21.0 -4.0 -25.0 -35.4 11.4
66 -12.7 -4.0 -16.7 -35.3 17.4
87 -25.1 -4.0 -29.1 -35.2 8.3
101 -27.2 -4.0 -31.2 -34.3 6.2
119 -24.4 -4.0 -28.4 -34.2 8.1

a Energies in kcal/mol, where each energy contribution is already
scaled by 1/εp with εp ) 2 (which corresponds to the nonpolar protein
environment).
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tion). Thus it may be useful for those who might have
conceptual problems with the PDLD and related dipolar models
to just try an LD program (e.g. ref 57). Another related issue
is the perception that the PDLD/S is a new model that reflects
a departure from the PDLD model. However, the PDLD/S is
not a new model, as it has been introduced in ref 18, and it is
perhaps the first semi-macroscopic model to correctly include
the protein dipoles; and its present version presents the first
semi-macroscopic model to correctly include the protein reor-
ganization. Obviously, the PDLD/S is a different model than
the PDLD in the same way that a FEP all-atom model is
different from the PDLD. In fact, using different models is
extremely useful for comparative studies provided they are
treated consistently. The PDLD model has larger average error
in the rather trivial case of surface groups than the PDLD/S or
the null model does. The same is true for the LRA and FEP or
any other microscopic model. However, microscopic models
are developed and refined since in principle they are more
realistic and must eventually be more reliable (for treating
nontrivial internal groups) once the convergence problems are
overcome. Furthermore, the PDLD and other dipolar models
are expected to be more reliable for the truly challenging cases
of strong ion pairs and highly charged clusters (e.g. the iron-
sulfur protein study of ref 90). Finally, just to give this issue
a proper perspective, it should be noted that the PDLD model
had an error range of∼3 kcal/mol in the 1970s when continuum
models had an inherent error of 30 kcal/mol (see comparative
study in Table 7 of ref 14).
The present work examined the effect of charge-charge

interaction in lysozyme and concluded that these interactions
are usually small. The reason for the large effective dielectric
(εeff) for charge-charge interactions is associated with the ability
of the protein and its surrounding solvent to compensate for
the change in energy associated with charge separation (see for
example Figure 3 of ref 13). This ability, which is partially
reproduced by our LRA approach, might not be captured by
DC models with small assumedεp. For example, when one
deals with interactions between charges that are located far from
the protein surface,εeff starts to approach the assumedεp. Using
smallεp might lead in such cases to a significant overestimation
of the interaction between ionized groups. In this respect it is
useful to comment about the recent conclusion71 thatεp in DC
models should be quite large (i.e.εp ≈ 20). This conclusion
probably reflects the attempt to account for the small value of
∆Gij by DC models. Using such an empirically basedε is fully
justified,13,55,91when one deals with charge-charge interactions.
However, when one uses DC methods theεp that gives optimal
∆Gij is not the one that gives the best values for the self-energies.
This is the reason for the relatively poor results obtained for
Glu35 with largeεp.83 Only approaches that account consis-
tently for the protein relaxation can hope to have the sameεp
for pKint and∆Gij. Trying to obtain the bestεp by optimizing
a large data-base of pKa’s can be quite misleading since most
ionizable groups considered are surface groups, where the effect
of εp on pKint is rather small. If one really wishes to examine
the consistency of different dielectric models, one should focus
on internal groups with large pKa shift rather than on surface
groups.
The microscopic validity of the PDLD model has been

established in this work by illustrating a very good agreement
between its contribution to the self-energy and those of the all-
atom LRA model (see Figure 3). As a part of the analysis we
also examined the accuracy of the LRA results. At present it
appears that the microscopic LRA treatment does not give
sufficiently accurate results. However, we were able to establish
that improved boundary conditions, inclusion of induced dipoles,

and averaging over initial conditions increase the accuracy of
the calculated results.
This work demonstrates that the scaling of the LRA energies

according to the LRA/S formulation leads to results as accurate
as those of the PDLD/S model. This finding provides a clear
support to our argument8 that obtaining better precision by
macroscopic models than by microscopic models has less to
do with the physics of the macroscopic models and more to do
with the scaling of large compensating numbers.
The approach used in the present study allows one to explore

the relationship between microscopic and semi-microscopic
models in a direct and consistent way. In fact, we can easily
use our method to, completely or partially, move from explicit
water to simplified water models in the protein interior. This
can be done by arbitrarily treating a given number of all-atom
water molecules as a part of this “protein” system (region II in
the notation of ref 14). Since the all-atom solvent model is
always running in the background of the PDLD treatment (the
LRA all-atom treatment is used in generating the protein
configurations for the PDLD calculations), we have no consis-
tency problem. This is, however, not the case in recent attempts
to add explicit solvent molecules to DC calculations (e.g. ref
92). It seems that in such cases the solvent is aligned arbitrarily
without a clear energy criterion and different results would be
obtained with different assumptions. Of course, arbitrary
addition of solvent molecules cannot describe properly the effect
of solvent reorganization during the charging process.
The role of charge-charge interactions in proteins is of

significant interest (e.g. ref 55). However, it seems that such
interactions are significantly smaller than what is usually
assumed; except in special cases when the protein is designed
to stabilize ion pairs (e.g. ref 78) or when ionizable groups that
are located at a nonpolar environment become charged upon
change of pH.13,83 As is illustrated in this paper, models that
take into account the reorganization of the protein dipoles (in
response to the development of the charges of the interacting
groups) can allow one to consistently use smaller values ofεp.
It is also pointed out here that overestimates of∆Gij can be
easily overlooked since observed titration curves can be
reproduced with incorrect values of the charge-charge interac-
tion terms. Only careful mutation experiments can be used to
determine charge-charge interactions, and such experiments
are repeatedly pointing toward small charge-charge interactions.
As argued above, true DC approaches such as the TK model

cannot describe correctly the energetics of ionizable groups in
proteins. Including the protein permanent dipoles makes such
models more microscopic and starts to capture the correct
physics of electrostatic energy in proteins. However, current
DC models do not account at present for the microscopic effect
of the protein reorganization energy. We predict, however, that
eventually such models will incorporate the reorganization effect
(as done in the PDLD/S model) and become more microscopic,
resembling more and more the PDLD/S and LRA/S models. In
this respect the fact that the solvent around the protein is
modeled by a continuum has no fundamental consequences since
the same or very similar results would be obtained by almost
any model of the surrounding, provided it leads to a large
effective dielectric for charge-charge interactions. The dif-
ference in physics is in the treatment of the microenvironment
inside the protein, and this must be represented with sufficient
microscopic reality. Of course one may argue that the given
model is still macroscopic, but this involves significant con-
ceptual problems. For example, arguing that treating the
reorientation of the protein dipoles microscopically (as done
here) is still macroscopic is problematic, since the resulting
dielectric constant would have no relationship to the protein

4470 J. Phys. Chem. B, Vol. 101, No. 22, 1997 Sham et al.



dielectric constantεj; such a treatment would produce a dielectric
constant ofεw ) 2 (containing only the electronic part) for water
instead ofεjw ) 80. At any rate, regardless of the “label” of
different models it is clear that the representation of the protein
polar environment and its reorientation is a crucial requirement
of consistent protein models.
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