
Complementing layout information with
render information in SBML files

Ralph Gauges, Sven Sahle and Katja Wegner
EML Research

Schloss-Wolfsbrunnen Weg 33
D-69118 Heidelberg

Germany

January 30, 2008



1 Introduction

In 2003 we proposed an extension to the SBML file format that allowed pro-
grams to include layout and render information in SBML files to store one
or more graphical representations of the SBML model. During the discus-
sions on the SBML mailing list, it soon became evident that a consensus for
both layout and render information would not be reached easily, therefore
we separated the layout from the render part of the specification and con-
centrated on the inclusion of layout information into SBML files. Now three
years later, we consider the layout extension to be ready for general usage
and as a matter of fact, it has been accepted as an official extension to the
upcoming SBML Level 3. There are several implementations for it and some
programs already use it to exchange layout information on reaction networks.
With the growing interest in graphical representations of reaction networks
we feel that it is now time to complement the layout extension with a render
extension that builds on it and allows the user to define not only the size and
location of the objects, but also how they are to be rendered.

2 Design decisions

The first and as we think natural decision was to base the render extension
on the existing layout extension. Secondly, we tried to make the render
extension as flexible as possible in order to not impose any artificial limits
on how programs can display their reaction networks.

We wanted to keep the render extension independent of the SBML model
as well as of the layout extension, therefore the render information will be
stored as one or more separate blocks. There can be one block of render infor-
mation that applies to all layouts and an additional block for each layout. In
the beginning this render information will be stored in the annotation of the
listOfLayouts element or the annotation of a layout element respectively.

The render information consists of a set of styles that are associated with
objects from the layout either by a list of ids of layout objects or by roles
of layout objects or ids of their corresponding model elements. For example
you can define a style that can be applied to all SpeciesReference objects or
to all objects that have the role product.

Global render information included in the annotation of the listOf-

Layouts element will only be able to define styles that associate render in-
formation with roles of elements, it can not associate styles with individual
objects from a layout.

Many of the elements used in the current render specification are based

1



on corresponding elements from the SVG specification. This allows us to
easily convert a combination of layout information and render information
into a SVG drawing. At the same time we profit from the work that has
already been done while creating the SVG specification.

3 Render information

The render extension provides two locations where styles can be defined.
First each layout can have its own set of render information located in the
annotation of the layout element (local render information). Second, a set
of global render information located in the annotation of the listOfLayouts
element can be defined.

It is important to note that each layout can have more than one set of
local render information and that it is also possible to define more then one
global style. Each style can also reference another style that complements it,
this way the user can create styles that are based on other styles. In contrast
to local styles, the global styles can not reference individual layout elements
by an id, they can only define role based or type based styles.

3.1 Local render information

The top level element for the local render information is called listOf-

RenderInformation which can contain a list of one or more renderInformation
elements of type LocalRenderInformation. The LocalRenderInformation data
type is based on the RenderInformationBase data type. The RenderInfor-
mationBase class is derived from SBMLs SBase type and has five attributes.
The id attribute is of type SId like the ids in SBML. It is used to give the
renderInformation element a unique id through which it can be referenced
from other LocalRenderInformation objects. The optional attribute name

gives a LocalRenderInformation object a more user friendly name that can
be displayed in programs.

The attributes programName and programVersion are optional and can
be used to store information about the program that created the render in-
formation. Another optional attribute called referenceRenderInformation

can be used to specify the id of another local or global render information
object that complements the current render information object. So if a pro-
gram can find no fitting render information in the current render information
object, it can go on to the one referenced and see if it can find fitting informa-
tion there. In order to avoid loops, only render information objects that have
already been defined before may be referenced. So local render information

2



objects may reference any global render information object as well as any
local render information object that has already been defined and belongs to
the same layout.

In addition to those five attributes, the RenderInformationBase object
has three elements. The first element is called listOfColorDefinitions

and is used to predefine a set of colors to be referenced in styles. The second
element listOfGradientDefinitions contains linear and radial gradients to
be referenced in styles. How colors and gradients can be defined is explained
in the section called ”Colors and gradients”.

The third element is called listOfLineEndings and it is used to define
a set of line endings that can be applied to path objects. This is explained
in more detail in the section called ”Line endings”.

The LocalRenderInformation class extends the RenderInformationBase
class by one element. The element is called listOfStyles and it can hold
one or more local style objects. Each local style object is located in an
element called style and is of type LocalStyle.

A LocalStyle object has an attribute called id that uniquely identifies it.
It also has an optional roleList attribute which lists all the roles the style
applies to and it can have a typeList attribute which lists all the element
types the style applies to. The valid types for the typeList attribute are a
combination of one or more of the following values separated by whitespaces:

• COMPARTMENTGLYPH,

• SPECIESGLYPH,

• REACTIONGLYPH,

• SPECIESREFERENCEGLYPH

• TEXTGLYPH,

• GRAPHICALOBJECT and

• ANY

The ANY keyword specifies that this styles applies to any type of glyph
and would be equivalent to listing all the other keywords. Concerning the
valid keywords for the roleList attribute we had thought about taking those
from some kind of controlled vocabulary. Preferably, this would be some kind
of ontology like SBO. The specifics of this will have to be discussed with other
interested parties.

3



For the time being, all layout objects derived from GraphicalObject will
get an additional attribute called objectRole. This attribute can be used
to specify a string that specifies the role of the given object. If the same
string appears in the roleList of some render information object, the render
information applies to the object, but only if there is no render information
object that is more specific (see ”Style resolution” and ”Role resolution”
below).

LocalStyle objects can have one more optional attribute which is called
idList. This is simply a list of ids of layout objects the style applies to.

The only subelement of a style is a g element which specifies how the ele-
ment(s) covered by the idList, roleList and typeList are to be rendered.
The details of this element are described in the section about grouping below.

ListOfLocalRenderInformation inherits from SBase

renderInformation : LocalRenderInformation[1..∗]

RenderInformationBase inherits from SBase

id : SId

name : string {use=”optional”}
programName : string {use=”optional”}
programVersion : string {use=”optional”}
referenceRenderInformation : string {use=”optional”}
listOfColorDefinitions : ListOfColorDefinitions {use=”optional”}
listOfGradientDefinitions : ListOfGradientDefinitions {use=”optional”}
listOfLineEndings : ListOfLineEndings {use=”optional”}

LocalRenderInformation inherits from RenderInformationBase

listOfStyles : ListOfLocalStyles {use=”optional”}

ListOfLocalStyles inherits from SBase

style : LocalStyle[1..∗]

example:

4



LocalStyle inherits from Style

idList : string[1..∗] {use=”optional”}

Style inherits from SBase

id : SId

roleList : string[1..∗] {use=”optional”}
typeList : string[1..∗] {use=”optional”}
g : Group

<listOfLayouts xmlns="http://projects.eml.org/bcb/sbml/level2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<layout id="Layout_1">
<annotation>
<listOfRenderInformation

xmlns="http://projects.eml.org/bcb/sbml/render/level2">
<renderInformation id="FancyRenderer_Default"

name="default style"
programName="FancyRenderer"
programVersion="0.1.1">

<listOfColorDefinitions>
<colorDefinition ... />

...
</listOfColorDefinitions>
<listOfGradientDefinitions>
<linearGradient ... >

...
</linearGradient>
<radialGradient ... >

...
</radialGradient>

...
</listOfGradientDefinitions>
<listOfLineEndings>

...
</listOfLineEndings>
<listOfStyles>
<style id="CompartmentGlyphStyle" typeList="COMPARTMENTGLYPH">
<g ...>
...

</g>
</style>
...

</listOfStyles>
</renderInformation>

</listOfRenderInformation>
</annotation>

5



...
</layout>

</listOfLayouts>

3.2 Global render information

Global render information is specified very similar to local render information
there are only some slight differences that one has to be aware of. Global
render information is stored in an element called listOfGlobalRender-

Information which contains one ore more renderInformation elements of
type GlobalRenderInformation. The attribute and elements of GlobalRen-
derInformation objects and LocalRenderInformation objects are the same.
The only difference here is the fact that GlobalRenderInformation objects
in their referenceRenderInformation attribute may only reference ids of
other GlobalRenderInformation objects that have already been defined.

The listOfStyles element of the GlobalRenderInformation object con-
tains one or more style elements but this time these are of type GlobalStyle.
The GlobalStyle data type is also very similar to the LocalStyle data type
but the GlobalStyle does not have an idList attribute since referencing indi-
vidual ids from a layout does not make sense for a global render information
object. Otherwise global and local render information is specified in the same
way.

ListOfGlobalRenderInformation inherits from SBase

renderInformation : GlobalRenderInformation[1..∗]

GlobalRenderInformation inherits from RenderInformationBase

listOfStyles : ListOfGlobalStyles {use=”optional”}

example:

<listOfLayouts xmlns="http://projects.eml.org/bcb/sbml/level2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<annotation>
<listOfGlobalRenderInformation

xmlns="http://projects.eml.org/bcb/sbml/render/level2">
<renderInformation id="FancyRenderer_GlobalDefault"

name="default global style"
programName="FancyRenderer"
programVersion="0.1.1">

<listOfColorDefinitions>

6



...
</listOfColorDefinitions>
<listOfGradientDefinitions>

...
</listOfGradientDefinitions>
<listOfLineEndings>

...
</listOfLineEndings>
<listOfStyles>

...
</listOfStyles>

</renderInformation>
</listOfGlobalRenderInformation>

</annotation>
</listOfLayouts>

4 Styles

4.1 Positions and sizes

Positions and sizes for render elements can be specified as a combination of
absolute values where the default unit is pt (1/72 inch) and relative values
in % where the % symbol has to be added to the value. Each coordinate can
have zero or one relative component and zero or one absolute component.
For example to specify a coordinate that is 5 points left of the right edge of
the current viewport the user could specify −5 + 100%.

In order to make parsing of coordinate information easier, the absolute
component has to be specified before the relative component. If the absolute
component is 0.0, only the relative part has to be specified. All values are
relative to the bounding box of the corresponding element in the layout. This
bounding box basically specifies a canvas for the render elements to be drawn
on.

When applying transformations to elements with relative values, the rel-
ative values have to be converted to absolute values first.

4.2 Colors and gradients

Although, it is possible to specify the color for a graphical primitive directly,
colors and especially gradients can be specified in a so called listOfColor-

Definitions and listOfGradientDefinitions element which are subele-
ments of the RenderInformation data type. The listOfColorDefinitions

element holds one or more elements called colorDefinition of type Col-
orDefinition. The ColorDefinition data type is derived from SBase and has

7



two additional attributes. One id attribute which uniquely identifies the
ColorDefinition object within a RenderInformation object and an attribute
called value which holds a color value.

Color values are specified as a 6 to 8 digit hex string which defines the
RGBA value of the color. If only the first six digits for the RGB value are
given, the alpha value is assumed to be 0xFF which means that the color is
totally opaque. Instead of specifying a color value, the value ’none’ can be
given which is equal to no drawing at all. To specify ’none’ for the stop-color
of a gradient is not allowed.

ColorDefinition inherits from SBase

id : SId

value : string

example:

<listOfColorDefinitions>
<colorDefinition id="darkred" value="#200000" />

...
</listOfColorDefinitions>

All graphical primitives in the render extension have a stroke attribute
that is used to specify the color of the stroke that is used to draw the curve
or the outline of ellipses, rectangles or polygons. This stroke attribute can
either hold a color value or it can hold the id of a predefined ColorDefinition
object.

The listOfGradientDefinitions element holds one or more linear-

Gradient or radialGradient subelements of type LinearGradient or Radi-
alGradient respectively.

The base class for both gradient types is called GradientBase and it has
the two attributes id and spreadMethod. As well as a list of so called
”gradient stops”. The id attribute is used to identify and reference a gradient
within a render information.

GradientBase inherits from SBase

id : SId

spreadMethod : string {use=”optional” default=”pad”}
stop : GradientStop[1..∗]

The spreadMethod attribute is optional and specifies the method that is
used to continue the gradient pattern if the vector points do not span the

8



whole bounding box of the object the gradient is applied to (see example
below). The attribute can have three values called pad, reflect or repeat:

• pad: the gradient color at the endpoint of the vector defines how the
gradient is continued beyond that point (default value).

• reflect: the gradient continues from end to start and then from start
to end again and again.

• repeat: the gradient pattern is repeated from start to end over and
over again.

Figure 1: example of different SVG spreadMethod values

To specify ”gradient stops” the a gradient element can hold one or more
subelements called stop which are of type GradientStop. The GradientStop
data type has two attributes. The first attribute, called offset, represents
the relative distance from the starting point of the gradient. Depending on
the type of gradient, this is either the point defined by the x1,y1 and z1

attributes (linear gradient) or the fx,fy and fz attributes (radial gradient).
The value is given as a positive percentage value (usually somewhere between
0% and 100%). The other attribute is called stop-stroke and defines the
color for the given gradient stop. The attributes value can either be given as
a hexadecimal color value or as the id of a ColorDefinition object from the
listOfColorDefinitions (see above). To specify the id of another gradient
as the value of a stop-color attribute is considered an error. In case the two
points that define the gradient vector are identical, the area is to be painted
with a single color taken from the last gradient stop element.

A linearGradient element has six attributes. The attributes x1, y1, z1,
x2, y2 and z2 are all optional and define a vector on which the gradient stops

9



are mapped. If not specified, x1, y1 and z1 default to 0% and x2,y2 and z2

default to 100%.

LinearGradient inherits from GradientBase

x1 : string {use=”optional” default=”0%”}
y1 : string {use=”optional” default=”0%”}
z1 : string {use=”optional” default=”0%”}
x2 : string {use=”optional” default=”100%”}
y2 : string {use=”optional” default=”100%”}
z2 : string {use=”optional” default=”100%”}

GradientStop inherits from SBase

offset : string

stop-color : string

example:

<listOfGradientDefinitions>
<linearGradient x1="30%" y1="50%" x2="70%" y2="50%">
<stop offset="0%" stop-color="#0000A0" />
<stop offset="100%" stop-color="darkred" />

</linearGradient>
...

</listOfGradientDefinitions>

The RadialGradient data type has seven additinal attributes. The at-
tributes cx, cy and cz define the center of the radial gradient. The attributes
are optional and can either be given in absolute or relative coordinates. The
default value for all three attributes is 50%. The r attribute defines the ra-
dius of the gradient and it can also be specified in either absolute or relative
coordinates. Specifying negative values for r is considered an error. The
attributes fx, fy and fz specify the focal point of the gradient. The gradient
will be drawn such that the 0% stop is mapped to (fx,fy,fz). The attributes
fx, fy and fz are optional. If one is omitted it is considered to equal to the
value of cx, cy and cz respectively.

example:

<listOfGradientDefinitions>
<radialGradient cx="50%" cy="50%" r="20" spreadMethod="repeat">
<stop offset="10%" stop-color="#000040" />

10



RadialGradient inherits from GradientBase

cx : string {use=”optional” default=”50%”}
cy : string {use=”optional” default=”50%”}
cz : string {use=”optional” default=”50%”}
r : string {use=”optional” default=”50%”}
fx : string {use=”optional”}
fy : string {use=”optional”}
fz : string {use=”optional”}

<stop offset="90%" stop-color="#0000C0" />
</radialGradient>

...
</listOfGradientDefinitions>

4.3 Graphical primitives

The graphical primitives polygons, rectangles and ellipses are based on the
corresponding elements from SVG. For lines, arcs and general path primi-
tives, we basically reuse the curve element from the layout extension. There
is however one difference to the Curve data type from the layout extension.
Whereas Point objects in the layout extension could only contain absolute
values for their coordinates, Point objects in the render extension can contain
relative coordinate values. Since polygons are very similar to general path
primitives, we also make use of the Curve data type to specify polygons in
the render extension.

All graphical primitives have attributes in common that specify some
drawing properties. As mentioned in the ”Colors and gradients” section,
each graphical primitive has a stroke attribute that defines the color used for
curves and outlines of geometric shapes. In addition to that, the stroke-width
attribute specifies the width of the stroke and the stroke-dasharray is a
list of numbers that specifies the lengths of dashes and gaps that are used to
draw the line. The individual numbers in the list are separated by commas.

In addition to those attributes, ellipses, polygons, curves and rectangles
have an attribute called fill that specifies the fill style of those elements.
The fill style can either be a hexadecimal color value or the id of a ColorDef-
inition object or the id of a GradientDefinition object. Instead of a color or
gradient id, ’none’ can be specified which means that the object is unfilled.

Additionally, an attribute called fill-rule can be used to specify how
the shape should be filled. Allowed values for fill-rule are:

• nonzero (default),

11



• evenodd or

• inherit.

For a detailed description on how those attributes work in detail, we would
like to refer you to the corresponding documentation in the SVG specification.
As time permits we will add our own documentation.

As a common base class for all elements that can be drawn, we introduce
the class Transformation3D which contains one attribute called transform
that specifies an affine transformation matrix in 3D consisting of exactly
twelve double values. Since the layou and render extension are only 2D
so far, this class is only used as a base class for Transformation2D and
we leave the complete specification of this class for a future version of this
document.

Transformation3D inherits from SBase

transform : double[12] {use=”optional”}

Since the current render information specification only defined 2D objects,
we derive a second class called Transformation2D from Transformation3D.
This new class restricts the transformation matrix to specify the six values of
a 2D affine transformation. The class Transformation2D serves as the base
class for all drawable 2D objects.

Transformation2D inherits from Transformation3D

transform : double[6] {use=”optional”}

4.4 Transformations

In order to be able to display text that is not aligned horizontally or vertically
or to effectively compose groups of objects from primitives, transformation
like rotation, translation and scaling are needed. SVG, among other options,
allows the user to specify a 3x3 matrix transformation matrix:

 a c e
b d f
0 0 1



12



Since the last row of the matrix is always 0 0 1, the matrix is specified as
a six value vector. Therefore, in the render extension each group or graphi-
cal primitive is derived from the class Transformation2D and can have a
transform attribute just as in SVG. The allowed value for the attribute has
the form: a, b, c, d, e, f.

The values for a,b,c,d,e and f depend on the transformation operation
components and the order in which those transformation components are
executed.

There are five basic transformation operations that can be combined in
a affine transformation matrix.

4.4.1 Translation

Translating something means moving it some distance along one or more of
the axes. The corresponding 2D tranformation matrix is

 1 0 tx
0 1 ty
0 0 1


where tx and ty are the distance along the x and y axes by which the

object shall be moved.

4.4.2 Scaling

Scaling means to multiply all coordintate components of an object by a cer-
tain value. The corrsponding 2D transformation matrix is

 sx 0 0
0 sy 0
0 0 1


where sx and sy are the scaling factors along the x and y axis respectively.

4.4.3 Rotation

With a rotation, an object can be rotated around the origin of the coordinate
system. The corrsponding 2D transformation matrix is

13



 cos(α) −sin(α) 0
sin(α) cos(α) 0

0 0 1


where α is the angle of rotation around the origin.

4.4.4 Skewing

Skewing is the least used operation and we have to distinguish between skew-
ing along the x or the y axis. The corrsponding 2D transformation matrices
are

 1 tan(α) 0
0 1 0
0 0 1



 1 0 0
tab(β) 1 0

0 0 1


where α is the skewing angle of skewing along the x axis and β is the

angle for skewing along the y axis.
Combining several of the operations above means multiplying the trans-

formation matrices that belong to the individual operations. Depending on
the matrices that are multiplied, the order of the operations matter, e.g. it
makes a difference if an object is tranlated before it is rotatet or if it is rotatet
first.

example:

<g ...>
<text x="50%" y="50%" text-anchor="middle" stroke="#FF0000"

font-family="serif" font-size="20.0"
transform="1.0, 3.0, 2.5, 1.4, 4.0, 5.0">This is a Text</text>

...
</g>

14



GraphicalPrimitive1D inherits from colorredTransformation2D

stroke : string {use=”optional”}
stroke-width : string {use=”optional”}
stroke-dasharray : double[1..∗] {use=”optional”}

GraphicalPrimitive2D inherits from GraphicalPrimitive1D

fill : string {use=”optional”}
fill-rule : string {use=”optional” default=”nonzero”}

4.4.5 Curves

Simple lines and complex curves are represented by the curve element intro-
duced in the layout extension. A curve has a listOfCurveSegments element
that can hold an arbitrary number of line segments and cubic bezier elements
in any order . With this, any path can be represented.

As mentioned earlier, Point objects used to specify the individual curve
segments can contain relative values for their coordinates as well as absolute
values. The coordinate values are always with respect to the bounding box
of the layout object the render information applies to.

To assign line endings to the start and end of a path object, two new
attributes were introduced. They are called startHead and endHead and
specify the id of the line ending that shall be applied to the start and the
end of the curve respectively. Both attributes are optional. How line endings
are defined is described in the section called ”Line endings”.

Curve inherits from GraphicalPrimitive2D

startHead : SId {use=”optional”}
endHead : SId {use=”optional”}
listOfCurveSegments : ListOfCurveSegments

ListOfCurveSegments inherits from SBase

curveSegment : LineSegment[1..∗]

example:

<g ...>
<curve stroke-width="2.0" stroke="#000000" >

15



Point inherits from SBase

id : SId {use=”optional”}
x : string

y : string

z : string {use=”optional” default=”0.0”}

LineSegment inherits from SBase

start : Point

end : Point

CubicBezier inherits from LineSegment

basePoint1 : Point {use=”optional”}
basePoint2 : Point {use=”optional”}

<listOfCurveSegments>
<curveSegment xsi:type="LineSegment">
<start x="0%" y="50%" />
<end x="100%" y="50%" />

</curveSegment>
</listOfCurveSegments>
</curve>
...

</g>

4.4.6 Polygons

A polygon object is made up of a polygon element which contains a listOf-
CurveSegments that defines the edge of the polygon.

The major difference to the curve object is that the individual curve
segments can only be straight lines and the last point of the curve is connected
to the first, so the polygon is always closed. Therfore, the polygon can have
a fill style that determines how the inside of the polygon is to be rendered.

Polygon inherits from GraphicalPrimitive2D

listOfCurveSegments : ListOfCurveSegments

example:

<g ...>
<polygon fill="darkred" stroke="#000000" >
<listOfCurveSegments>
<curveSegment xsi:type="LineSegment">

16



<start x="0%" y="50%" />
<end x="30%" y="0%" />

</curveSegment>
<curveSegment xsi:type="LineSegment">
<start x="30%" y="0%" />
<end x="70%" y="0%" />

</curveSegment>
<curveSegment xsi:type="LineSegment">
<start x="70%" y="0%" />
<end x="100%" y="50%" />

</curveSegment>
<curveSegment xsi:type="LineSegment">
<start x="100%" y="50%" />
<end x="70%" y="100%" />

</curveSegment>
<curveSegment xsi:type="LineSegment">
<start x="70%" y="100%" />
<end x="30%" y="100%" />

</curveSegment>
</listOfCurveSegments>

</polygon>
...

</g>

Figure 2: Rendering of a Path vs. rendering of a Polygon with the same base
points

4.4.7 Rectangles

The rectangle object was taken from the SVG specification and allows the
definition of rectangles with or without rounded edges.

The rectangle has the attributes x, y and z to specify its position within
the bounding box of the enclosing layout object and a width and height at-
tribute that specifies the width and height of the rectangle, either in absolute
values or as a percentage of the width and height of the enclosing bounding
box. The default value for the optional z attribute is 0.0.

17



Additionally the rectangle has two optional attributes rx and ry that
specify the radius of the corner curvature. If only rx or ry is specified, the
other is presumed to have the same value as the one given. The default value
for rx and ry is 0.0 which means that the edges are not rounded.

Rectangle inherits from GraphicalPrimitive2D

x : string

y : string

z : string {use=”optional” default=”0.0”}
width : string

height : string

rx : string {use=”optional” default=”0.0”}
ry : string {use=”optional” default=”0.0”}

example:

<g ...>
<rectangle x="0%" y="0%" width="100%" height="100%" rx="5%"

fill="darkred" stroke="#000000" />
...

</g>

4.4.8 Ellipses

The definition of an ellipse was also taken directly from SVG. The ellipse
has the attributes cx, cy and cz to specify the center of the ellipse and rx

and ry to specify the radius of the ellipse along the x-axis and the y-axis
respectively. If only rx or ry is specified, the other is presumed to have the
same value. Circles are a special case of an ellipse where rx and ry are equal.
Again cz is optional and its default value is 0.0.

Ellipse inherits from GraphicalPrimitive2D

cx : string

cy : string

cz : string {use=”optional” default=”0.0”}
rx : string

ry : string {use=”optional” default=rx}

example:

18



<g ...>
<ellipse cx="50%" cy="50%" rx="30%" fill="#00FF00" stroke="#000000" />

...
</g>

4.4.9 Text elements

In order to draw text, we use the text element from SVG with slight mod-
ifications. Like the text element in SVG, our text element has the optional
attributes font-family to specify which font to use and font-size to spec-
ify the size of the font. If specified, font-size must be a positive value. It
can be either an absolute value or a relative value. In the case of a rela-
tive value it specifies a percentage of the height of the corresponding object.
Combinations of absolute and relative values as for the point objects in other
objects are not allowed.

For reasons of simplicity, we limit the display of text to normal text,
outlined or filled-outlined text are not supported. Also in order to simplify
the text display we think it would be best practice if programs would limit
the choice of the font-family attribute to the generic families serif, sansserif
and monospace. But since those only apply to western languages, it make
sense to use other values for font-familie in certain cases.

The horizontal alignment of a text element can be specified by the text-anchor
attribute. Allowed values are start, middle and end. SVG does not seem to
provide any means for the vertical alignment of text, therefore in order to
make it easier for implementers we did not add it either. On the other hand
if people think that this is a necessary feature, we can either extend the al-
lowed values for the text-anchor attribute, or we can add a second attribute
with the same allowed values to do vertical text alignment. Depending on
the value of the text-anchor attribute, the x, y and z attributes of the text
element either specify the left bottom corner, the middle bottom position
or the right bottom corner of the text. As in rectangles and ellipses, the z

attribute is optional and its default value is 0.0.
The text element has two more attributes. One is called font-weight

and specifies whether a font is to be drawn bold. The only values allowed
for font-weight are bold and normal. Likewise the font-style attribute
determines whether a font is to be drawn italic or normal and consequently
the only allowed values are italic and normal. Both attributes are optional.

example:

<g ...>
<text x="50%" y="50%" text-anchor="middle" stroke="#FF0000"

font-family="serif" font-size="20.0" >This is a Text</text>

19



Text inherits from GraphicalPrimitive1D

x : string

y : string

z : string {use=”optional” default=”0.0”}
font-family : string {use=”optional”}
font-size : string {use=”optional”}
font-weight : string {use=”optional”}
font-style : string {use=”optional”}
text-anchor : string {use=”optional”}

...
</g>

4.4.10 Bitmaps

To include bitmaps into a graphical representation we use the image element
from SVG. The image element in SVG can also be used to include complete
SVG vector images which we explicitly exclude in this version of the proposal
since we think it would be too complex. If the need for the inclusion of SVG
drawings arises, it is only a matter of rephrasing this specification.

The image element has six attributes. The x, y and z attributes specify
the position of the image within the bounding box and the width and height

attributes specify its width and height. The z attribute is optional and its
default value is 0.0. The actual image data is not embedded in the render
information, but the image element has an attribute called xlink:href that
references an external JPEG or PNG file. If the referenced image is larger
then the given width and height, it has to be scaled to the given dimensions.

Image inherits from Transformation2D

x : string

y : string

z : string {use=”optional” default=”0.0”}
width : string

height : string

href : string

example:

<g ...>
<image x="10%" y="10%" width="80" height="100" href="Glucose.png" />

20



...
</g>

4.5 Grouping

Like in SVG, several graphical primitives can be grouped inside a g element
to generate more complex render information.

Group inherits from GraphicalPrimitve2D

font-family : string {use=”optional”}
font-size : string {use=”optional”}
font-weight : string {use=”optional”}
font-style : string {use=”optional”}
text-anchor : string {use=”optional”}
startHead : SId {use=”optional”}
endHead : SId {use=”optional”}

stroke, stroke-width, stroke-dasharrays, transform, fill,fill-rule,
font-family, font-size, font-weight, font-style and text-anchor at-
tributes can be applied to groups. If any of those attributes is specified
for a Group object, it specifies the corresponding attribute for all graphical
primitives and groups defined within this group. If a graphical primitive or a
group redefines one or more of those attributes, the newly defined values take
effect. If an object within the group does not redefine those values, those of
the enclosing group apply. If an attribute is not defined in any object of a
style, its default values take effect. These default values are listed in Table
1.

It might seem a little unusual that the default values for stroke-width and
text-size are set to 0. The reason for this is that a style that only contains an
empty group is meant to define that the element the style applies to is not to
be rendered. Since the render information for curves in SpeciesReferenceG-
lyphs and ReactionGlyphs as well as the render information for TextGlyphs
is defined via attributes from the outermost group element of a style (see
below), the group would explicitly have to define the stroke-width or the
font-size to be 0 which would be inconsistent with the implied meaning of
an empty group. The outermost group can also contain information about
arrow heads to be used on curves specified in the layout. This information is
given via the startHead and endHead attributes just like for curve elements.
These attributes only apply to curve objects from the layout, not to curve

21



attribute default value

stroke-width 0.0
stroke-dasharrays empty list

transform 1.0, 0.0, 0.0, 0.0, 1.0, 0.0
fill none

fill-rule string {use=”optional” default=”nonzero”}
font-family sans-serif
font-size 0

font-weight normal
font-style normal

text-anchor start
startHead none
endHead none

Table 1: Attribute default values.

objects within the group. Since those two attributes only make sense on the
outermost group of a style, they are to be ignored on all other groups. The
default value for those attributes is none which means that no line ending
is to be drawn.

Each group also has an id through which it can be identified. In addi-
tion to those attributes a Group object can contain 0 or more child elements
that form the render information. These child elements have to be elements
derived from Transformation2D, so right now this would be Images or ev-
erything derived from raphicalPrimitive1D, e.g. rectangles, ellipses, curves,
polygons, text elements or groups.

Group inherits from GraphicalPrimitive1D

fill : string

fill-rule : string

font-family : string

font-size : string {use=”optional” default=”0.0”}
font-weight : string

font-style : string

text-anchor : string

children : Transformation[0..∗]

example:

22



<g stroke="#000000" font-family="serif" >
<rectangle x="0%" y="0%" width="100%" height="100%"

fill="blueLinearGradient" />
<text x="50%" y="50%" font-size="80%" text-anchor="middle"

stroke="#FF0000" />
</g>

5 Line endings

In many graphs the relations between nodes are depicted by lines and often
the type of relation is encoded in the line ending. For this reason, the render
extension provides ways to specify a set of arbitrary line endings and means
to apply those to path objects. The individual line endings are defined in an
element called listOfLineEndings which comes right before the listOf-

Styles.
The individual line endings are defined as group objects just like styles.

Therefore, arbitrarily complex line endings can be defined. Each line ending
is encapsulated in an element called lineEnding and contains two subele-
ments.

The first element is called boundingBox and it specifies the viewport
that is used to draw the line ending. Just like the bounding boxes of the
layout extension, this bounding box contains a position and a dimensions

subelement. The dimensions element specifies the size of the viewport for
the line ending along each of the axes. The position specifies the offset
from the end of the curve that the line ending is applied to. A position
of (0.0, 0.0, 0.0) means that the origin of the line endings bounding box is
mapped directly to the end of the curve. For a description on how the
mapping is calculated in all other cases see the section called ”Mapping line
endings to curves”.

The second subelement is a group element that holds the render informa-
tion for the line ending.

The two attributes of the lineEnding element are the id attribute which
is used to specify a unique id for the line ending by which it can be ref-
erenced and an attribute called enableRotationalMapping. The enable-

RotationalMapping attribute specifies whether a line ending will be rotated
depending on the slope of the line it is applied to or if it is drawn just the
way it was specified. The default value for the attribute is true which means
that the line ending is rotated depending on the slope of the line. A more
detailed description of this mapping is given in figure 5.1.

In order to declare that a certain line ending is to be used on a path
object, the curve element has two attributes called startHead and endHead

23



which hold the id of a line ending definition for the start and for the end of
the path respectively.

5.1 Mapping line endings to curves

In order to apply a line ending which is defined using only 2D coordinates onto
a line which has been defined using 3D coordinates, we need to define a kind
of mapping. The first definition we make is that the origin of the line ending
viewport is mapped to the end of the line to which the line ending is applied.
If the enableRotationalMapping attribute is set to false, the line endings
coordinate system is the same as the global coordinate system used to draw
the layout, only the origin is moved to that end of the line the line ending is
applied to. If the enableRotationalMapping attribute is set to true, which
is the default, we define that the x,y-plane of the line endings viewport is
mapped to the plane that results from taking the unit vector of the slope of
the line and unit vector that results from orthonormalizing the slope vector
and a second vector that has no component along the z axis. If the slope of
the line has a positive component along the x axis, the orthonormalized vector
also has to have a positive component along the y axis. In order to retain
the right handed coordinate system, the z axis of the line endings coordinate
system is perpendicular to the plane created by the other two vectors and has
a positive component along the global coordinate systems z-axis. Likewise
if the slope has a negative component along the global coordinate systems x
axis, the y component of the orthonormalized second vector has a negative
component along the y axis of the global coordinate system and to retain the
right handed coordinate system, the third vector which is perpendicular to
the plane made by the slope and its orthonormalized vector, has a positive
component along the global coordinate systems z axis.

If the slope of the line points directly along the positive z axis of the global
coordinate system, the line endings coordinate system is mapped to the line
ending by a -90 rotation around the y axis of the line endings coordinate
system and a translation of the origin of the line endings coordinate system
to the end of the line. If the slope points directly down the negative z axis,
the line endings coordinate system has to be rotated by +90 around its y
axis before translation to the position of the curves end.

This may all sound very complicated, but in the end, the calculations to
be done are not difficult and straight forward. A mathematical description
of the calculations necessary is given in Appendix A.

If we define Q = − dys

dxs
and D = ” 1√

Q2+1
” then the transformation of

any point P = (x, y, z) in the line endings coordinate system to the global

24



coordinate system depending on the slope of the curve ~S =

 dxs

dys

dzs

 and the

curves endpoint O =

 xO

yO

zO

 can be described by:

Pnew =

 dxs ∗ x + SGN(dxs) ∗Q ∗D ∗ y − dzs ∗ SGN(dxs) ∗D ∗ z + xO

dys ∗ x + SGN(dxs) ∗D ∗ y + dzs ∗ SGN(dxs) ∗Q ∗D ∗ z + yO

dzs ∗ x + (dxs ∗ SGN(dxs) ∗D − dys ∗ SGN(dxs) ∗Q ∗D) ∗ z + zO


This is for the cases where the slope vector ~S does run parallel to the global

coordinate systems z axis. For this species case, the new point is calculated by:

Pnew =

 SGN(dzs) ∗ −z + xO

y + yO

SGN(dzs) ∗ x + zO


The SGN function describes the sign of its argument. It returns 1 for positive

numbers, 0 for 0 and −1 for negative numbers. For the details of how this trans-
formation was calculated and the definition of the SGN function see Appendix
A.

Note that the mapping of line endings to lines is to be done before all trans-
formations defined for the line have been applied. Transformations defined on the
line ending itself or on any of its components are to be applied before the line
ending is mapped to the curve.

LineEnding inherits from GraphicalPrimitive2D

id : SId

enableRotationalMapping : boolean default=true

boundingBox : BoundingBox

g : Group

example:

<lineEnding id="SimpleArrowHead">
<boundingBox>
<position x="-10.0" y="-4.0" />
<dimensions width="12.0" height="8.0"/>

</boundingBox>
<g>
<polygon>
<curve>
<listOfCurveSegments>

25



<curveSegment xsi:type="LineSegment">
<start x="100%" y="50%" />
<end x="0%" y="100%" />

</curveSegment>
<curveSegment xsi:type="LineSegment">
<start x="0%" y="100%" />
<end x="0%" y="0%" />

</curveSegment>
</listOfCurveSegments>

</curve>
</polygon>

</g>
</lineEnding>

Figure 3: example of a line ending with and without rotation mapping en-
abled

6 Style resolution

To resolve which style applies to a certain object, one should follow the rule that
more specific style definitions take precedence over less specific ones and that if
there are several styles with the same specificity, the first one encountered in the
file is to be used. In essence, this means that a program first has to search the
local render information for a style that references the id of the object. If none is

26



found, it searches for a style that mentions the role of the object. If it has one,
see next section. If it does not find one, it searches for a style for the type of the
object.

If a render information references another render information object via its
referenceRenderInformation attribute, the program has to go through that one
as well to see if a more specific render information is present there. If the chain
of referenced RenderInformation objects has been searched and no style has been
found that fits, it is up to the program how the object is rendered.

If several type based styles are found that would fit, a style that applies to
only one type takes precedence over a style that applies to several types.

If a program explicitly wants to define render information that states that some
objects are not to be rendered at all, it has to define a style that does nothing, i.e.
has no render information but applies to the objects that should not be rendered.

7 Role resolution

This render extension explicitly provides means to write render information that
renders layout objects based on certain roles those render objects or their corre-
sponding model objects have. So far SBML models or layouts do not contain such
role information or only for a limited number of objects if one would consider the
role attribute of SpeciesReferenceGlyph objects to fall into this category. Although
there is currently no means to specify these roles, there are already initiatives un-
derway that try to complement SBML files with more biological information based
on ontologies. One of these initiatives, the sboTerms, is about to be included into
SBML Level 2 Version 2. This ontology or a similar one could provide this role
information for layout objects in the future.

For the time being, we define an additional attribute called objectRole for
all layout objects derived from GraphicalObject including GraphicalObject itself.
The attribute specifies a user defined role string. render information including the
same roleString in its roleList applies to the object. This is only true if no more
specific render information takes precedence (see ”Style resolution”).

A specific style can reference one or more roles to which it applies. When a
program tries to determine which style applies to a specific object it might have
to determine the role of the object layout first. If the layout object itself has a
role, this will be taken, otherwise if the layout object is associated with an object
in the model, the program should get the role from the associated object. If none
of them has a role, no role based style can be applied to the object.

27



8 Style information for reaction glyphs and

species reference glyphs

When defining a style for a ReactionGlyph or SpeciesReferenceGlyph object, one
has to distinguish between layout objects that only specify a bounding box for the
object and those that specify a curve. In the case of a bounding box, you want to
define complete render information, whereas in the case of a curve, you only want
to set certain attributes that determine certain aspects of how the curve should be
drawn, e.g. its color. To resolve this conflict, the style for such an object has to
define render information for both cases. The render information for the case of a
bounding box is specified just like render information for any other object within
a Group. Render information for the case of a curve is defined by the appropriate
attributes that are in effect in the outermost Group object itself. Those attributes
include stroke, stroke-width and stroke-dasharray. Additionally startHead
and endHead can be specified to define line endings for layout curve objects. If
the group does not define one or more of these attributes, the default value is used
(see section ”Grouping”).

Figure 4: style with render information for objects with curve or bounding
box

9 Style information for TextGlyphs

Just as in the case of curves in ReactionGlyphs and SpeciesReferenceGlyphs, Text-
Glyphs can be considered render information which is located in the layout. A
TextGlyph specifies the text to be rendered, it therefore does not need additional
render information in the form of a text element. On the other hand, it needs
render information in the form of font properties. Just as for the Curve object

28



for ReactionGlyphs and SpeciesReferenceGlyphs, this render information is taken
from the font related attributes of the outermost group element of the style that
is used to render a TextGlyph. Any additional information within the group
is ignored. If the group does not specify any of the font-family, font-size,
font-weight, font-style or text-anchor attributes, the default values are to
be used.

10 Uniqueness of IDs

Since local and global render information objects can reference other render infor-
mation objects, programs creating render information need to make sure that all
the IDs are unique within the reference history. In other words, a render infor-
mation object that references another render information object must make sure
that none of its IDs is equal to an ID in any of the directly or indirectly referenced
render information objects.

An exception to this rule is to create e.g. a color definition with the same ID
as the color definition in a referenced style in this case interpreting programs can
assume that this color definition is supposed to override the color definition with
the same name in the referenced render information object. Likewise it is also
possible to override a color definition with a gradient and vice versa, line ending
definitions on the other hand can only be replaced by other line ending definitions.

11 Appendix A

Position of line end: O(xO, yO, zO)

Normalized slope vector at end: ~S =

 dxs

dys

dzs


Orthogonal vector to ~S with z = 0:

dxs ∗ x2 + dys ∗ y2 = 0
dxs ∗ x2 = −dys ∗ y2

x2 = −dys ∗ y2

dxs

Choosing y2 = 1 ⇒ x2 = − dys

dxs

~V2 = (− dys

dxs
, 1, 0)

29



Normalize ~V2: Length of ~V2: l~V2
=
√(

− dys

dxs

)2
+ 1

~V2N =


− dys

dxs∗
√
− dys

dxs

2
+1

1√
− dys

dxs

2
+1

0


Retain right handed coordinate system:

~V2N =


SGN(dxs) ∗ − dys

dxs∗
√(

− dys
dxs

)2
+1

SGN(dxs) ∗ 1√(
− dys

dxs

)2
+1

0


SGN(x) is defined as:

SGN(x) =


1 for x > 0
0 for x = 0
−1 for x < 0

Calculation of the third vector:

~V3N = ~S × ~V2N

=

 dxs

dys

dzs

×


SGN(dxs) ∗ − dys

dxs∗
√
− dys

dxs

2
+1

SGN(dxs) ∗ 1√
− dys

dxs

2
+1

0



=


dys ∗ 0− dzs ∗ SGN(dxs) ∗ 1√

− dys
dxs

2
+1

dzs ∗ SGN(dxs) ∗ − dys

dxs∗
√
− dys

dxs

2
+1

− dxs ∗ 0

dxs ∗ SGN(dxs) ∗ 1√
− dys

dxs

2
+1

− dys ∗ SGN(dxs) ∗ − dys

dxs∗
√
− dys

dxs

2
+1



=


−dzs ∗ SGN(dxs) ∗ 1√

− dys
dxs

2
+1

dzs ∗ SGN(dxs) ∗ − dys

dxs∗
√
− dys

dxs

2
+1

dxs ∗ SGN(dxs) ∗ 1√
− dys

dxs

2
+1

− dys ∗ SGN(dxs) ∗ − dys

dxs∗
√
− dys

dxs

2
+1



Now we have to map the line endings coordinate system to the coordinate
system specified by ~S, ~V2N and ~V3N . This basically involves rotations around
the x,y and z axis of the line endings coordinate system:

30



T ·

 1 0 0
0 1 0
0 0 1

 =
(
~S ~V2N

~V3N

)

T =


dxs SGN(dxs) ∗ − dys

dxs∗

√(
− dys

dxs

)2
+1

−dzs ∗ SGN(dxs) ∗ 1√
− dys

dxs

2
+1

dys SGN(dxs) ∗ 1√(
− dys

dxs

)2
+1

dzs ∗ SGN(dxs) ∗ − dys

dxs∗
√

− dys
dxs

2
+1

dzs 0 dxs ∗ SGN(dxs) ∗ 1√
− dys

dxs

2
+1

− dys ∗ SGN(dxs) ∗ − dys

dxs∗
√

− dys
dxs

2
+1


And last but not least, we have to translate the coordinate system to the

endpoint of the curve. So the overall transformation to map a point P (x, y, z)
in the line endings coordinate system to the curve is:

PT = (T · P ) + O

PT =

T ·

 x
y
z


+

 xO

yO

zO


Let D = 1√

(− dys
dxs

)
2
+1

T =

 dxs SGN(dxs) ∗ − dys
dxs

∗D −dzs ∗ SGN(dxs) ∗D xO

dys SGN(dxs) ∗D dzs ∗ SGN(dxs) ∗ − dys
dxs∗

∗D yO

dzs 0 dxs ∗ SGN(dxs) ∗D − dys ∗ SGN(dxs) ∗ − dys
dxs

∗D zO

0 0 0 1



PT =

 dxs SGN(dxs) ∗ − dys
dxs

∗ D −dzs ∗ SGN(dxs) ∗ D xO

dys SGN(dxs) ∗ D dzs ∗ SGN(dxs) ∗ − dys
dxs

∗ D yO

dzs 0 dxs ∗ SGN(dxs) ∗ D − dys ∗ SGN(dxs) ∗ − dys
dxs

∗ D zO

0 0 0 1

·

(
x
y
z
1

)

12 Changes

12.1 Draft 01/30/2008

• The LocalRenderInformation and the GlobalRenderInformation type
now have a common base class called RenderInformationBase.

• All classes for rendered 2D objects are now derived from the new class
Transformation2D. The transformation2D now holds the transform at-
tribute which has been part of GraphicalPrimitive1D. The consequence

31



of this is that Images which are now also derived from Transforma-
tion2D can be transformed.

• The section on transformations has been extended to explain what the
six elements of the transform attribute represent.

• The fill-rule attribute has been missing from the Group class and has
now been added. Some more small changes in the section about group-
ing.

Thanks to Frank Bergmann for the valuable suggestions.

32


