Including Layout Information in SBML Files
Version 1.2

Ralph Gauges, Ursula Rost, Sven Sahle and Katja Wegner
European Media Laboratory
Schloss-Wolfsbrunnen Weg 33

69118 Heidelberg
Germany

October 28, 2003

Introduction

With SBML there now is a common standard for the exchange of dynamical
systems data which has already been adopted by many applications in this
field [1L 2, 3]. Since SBML had no means of storing layout information for
reaction networks, we developed an extension to SBML that would allow
us to store this layout information in SBML files. There already exists an
extension to SBML by Herbert M. Sauro that deals with layout information
in SBML files [5] well tailored to his program JDesigner [4]. However, in
order to provide generality, our specification tries to limit the extensions to
just specifying information that concerns the placement of the objects and
leaves the rendering to the application.

Design principles and general structure

The overall structure of this proposal reflects some design decisions that will
be explained in this paragraph. These decisions are mainly based on the
discussion on the mailing list.

First it was requested that it should be possible to have several layouts
in one sbml file. This leads to the obvious choice to have a listOfLayouts
outside the model part of the sbml file instead of direct annotations to the
model elements.

The next question is how tight the relation between the model and the
layout should be. It was requested that there should be no strict one-to-one
connection between model elements and layout elements. Therefore the lay-
out part of the sbml file cannot just duplicate the structure of the model
part. This leads to a structure where a layout contains several lists of layout
elements (compartmentGlyphs, speciesGlyphs, ...) There seems to be con-
sensus that one model element can be represented by several layout elements.
For example it can be useful to have several representations of one species
in the layout to avoid lots of crossing arrows. This can be accomplished if
every layout element has a field that refers to the id of a model element.

We also think that there are cases where a layout element does not corre-
spondent to exactly one model element. This could occur if the layout shows
a simplified version of the model where one reaction in the layout correspon-
dents to several reactions and intermediate species in the model. This is the
reason why the field in the layout elements that refers to the model elements
is optional.

Further on we think that the layout should be described in biochemical
terms (species, reactions, ...) and not in terms of graph theory (nodes, edges).

Otherwise an existing language for graph layouts could be used.

The result of all this is a way to describe a graphical layout of a reac-
tion network in biochemical terms. This layout can be closely tied to the
biochemical model. A graphical model editor for example would typically
create a layout that is closely connected (by a one-to-several relation from
the model elements to the layout elements) to the model. A more general
layout design program could also create a layout that is not so closely tied
to the model, for example it could create a layout that shows a simplified
version of the model.

Last but not least we decided to separate between layout information and
render information. By layout information we mean the position and size of
all the layout elements and their relations. Render information would be
colors, line widths, bitmaps, ... While every program dealing with layouts
should be able to read and write the layout information the render infor-
mation could be ignored or could have program specific extensions. This
proposal concentrates on the layout part because we thought it would be
easier to reach an agreement on the overall structure of the layout without
the rendering details. The rendering detail are described in another docu-
ment for now, but we expect the documents to be merged eventually.

All size information given for layout objects are understood to be pt,
which is defined to be 1/72 of an inch. This will be consistent with the way
font sizes will be specified in the render part of the diagram.

Nomenclature

The UML diagrams in this document show the name of the class on top.
Below are the attributes specific to that class. Optional attributes have some
default value which may be NULL. Arrays are written in square brackets
where with the valid array length within those brackets. So a array [2..]
would mean that it can hold from 2 to oo number of objects (assuming that
you have some very large harddisk).

Inheritance tree

Namespace

For the extensions we use a separate namespace of the following form
xmlns:s12="http: //projects.eml.org/bcb/sbml/level2”. A SBML file that would
utilize the extension could have the following form:

Triangle Ellipses

SinglcCoIorFi||| |Dashcd5tmk: |

P RenderGroup
\| HVBox|

~|AffineTransformation

Ry,
SimpleTransfommation

. Filltype l | SolidStoke |

Trnsformation

CubicBezier |—[>[LineSegment

|Gl'.1phic.1| Oibject | IListDFL:l}'cvms J

LayoutGroup Layout

ReactionGlyph | |C0mpartmentG|§'ph| |SpccicsG|§'ph | I SpeciesReferenceGlyph ‘

Figure 1: Inheritance tree for the layout and render classes

<?xml version="1.0" encoding="UTF-8"7>
<sbml xmlns:sbml="http://www.sbml.org/sbml/level2" level="2" \\
version="1"
xmlns:sl2="http://projects.eml.org/bcb/sbml/level2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="http://projects.eml.org/bcb/sbml/level?2
http://projects.eml.org/bcb/sbml/level2/layout2.xsd">

Metainformation

All the layout classes below are now derived from a class called SBase which
was taken from the SBML Level 2 schema specification
(http://www.sbml.org/sbml/level2 /versionl/). This enables programs to store
metainformation with the layout objects.

SBase

+notes: xhtml = NULL
tannotation: any = NULL
+metaid: xsd:ID = NULL

XML Schema representation:

<xsd:complexType name="SBase" abstract="true">
<xsd:sequence>
<xsd:element name="notes" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:any namespace="http://www.w3.org/1999/xhtml"
processContents="skip"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="annotation" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:any processContents="skip" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="metaid" type="xsd:ID" use="optional"/>
</xsd:complexType>

<listOfLayouts > and <layout >

Due to the discussion on the shml mailing list, we took the layout information
out of the actual model into a separate tag called listOfLayouts which is
placed within the annotation tag of the sbml tag. This list can hold one
or more layout objects which in turn hold layout information for some or
all elements of the sbml model plus additional objects that need not be
connected to the model. The only attribute added to the ones from SBase
for the <layout > tag is an id which uniquely identifies the layout object and
the dimensions of the bounding box for the layout. The dimensions of the
bounding box are given by a width, height and an optional depth attribute,
all of type double. If not specified, the depth value defaults to 0.0. Ids are

defined to be the same as SId in SBML Level 2.
XML Schema representation:

ListOfLayouts

t+layouts: Layout[l..]

Layout

+id: SId

+width: double

theight: double

tdepth: double = 0.0

tcompartmentGlyphs: CompartmentGlyph[0..]
tspeciesGlyphs: SpeciesGlyph[0..]
treactionGlyphs: ReactionGlyph[O0..]
tadditionalGraphicalObjects: GraphicalObject[0..]
tgroups: Groupl[0..]

tbackground: Ceolcor = NULL

<xsd:simpleType name="SId">
<xsd:restriction base="xsd:string">
<xsd:pattern value="(_|[a-z]|[A-Z]) (_|[a-z] | [A-Z]|[0-91)*"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="ListOfCompartmentGlyphs">
<xsd:complexContent>

<xsd:extension base="sl2:SBase">

<xsd:sequence>

<xsd:element name="compartmentGlyph" type="sl2:CompartmentGlyph"
max0Occurs="unbounded" />

</xsd:sequence>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="List0OfSpeciesGlyphs">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:sequence>
<xsd:element name="speciesGlyph" type="s12:SpeciesGlyph" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="ListOfReactionGlyphs">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">

<xsd:sequence>
<xsd:element name="reactionGlyph" type="sl2:ReactionGlyph" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="ListOfAdditionalGraphicalObjects">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:sequence>
<xsd:any namespace="##other" processContents="skip"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="ListO0fGroups">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:sequence>
<xsd:element name="group" type="sl2:LayoutGroup" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="Layout">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:sequence>
<xsd:element name="listOfCompartmentGlyphs"
type="s12:List0fCompartmentGlyphs" minOccurs="0"/>
<xsd:element name="1listOfSpeciesGlyphs" type="sl2:List0fSpeciesGlyphs"
minOccurs="0"/>
<xsd:element name="listOfReactionGlyphs" type="sl2:ListOfReactionGlyphs"
minOccurs="0"/>
<xsd:element name="listOfAdditionalGraphicalObjects"
type="s12:List0OfAdditionalGraphicalObjects" minOccurs="0"/>
<xsd:element name="1list0fGroups" type="sl12:List0fGroups" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="id" type="s12:SId"/>
<xsd:attribute name="width" type="xsd:double"/>
<xsd:attribute name="height" type="xsd:double"/>
<xsd:attribute name="depth" type="xsd:double" use="optional" default="0.0"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="ListOfLayouts">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:sequence>
<xsd:element name="layout" type="sl2:Layout" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="listOfLayouts" type="sl2:ListOfLayouts"/>

< GraphicalObject> and <Transformation>

Most objects for which layout information is to be included in an SBML file
have a corresponding object in the SBML model. As there might be cases
where the user wants to include objects in the layout that are not part of the
model, we include a listOfAdditionalGraphicalObjects in each layout object.
This list holds one or more GraphicalObject elements. The GraphicalObject
has an id attribute of type SId through which it can be identified, it has
x, y and z attributes of type double to specify its position. And it has
width, height and depth attributes of type double for the size of the bounding
box of the object. The z and depth attributes are optional and default to
0.0. The GraphicalObject class also has an attribute called renderObject of
type SId to specify the render object associated with this layout object and
last but not least, an optional Transformation object can be specified. This
transformation is to be executed on the render object prior to rendering. This
way several layout objects may reference the same render object, but draw
it in a different size or angle. All other layout Objects (CompartmentGlyph,
SpeciesGlyph, ReactionGlyph and SpeciesReferenceGlyph) are derived from
GraphicalObject.

GraphicalObject
+id: SId
+x: double
+v: double

+z: double = 0.0
+width: double
+height: double

+depth: double = 0.0
+renderObject: SId = NULL
+transformation: Transformation = NULL

Right now, our proposal contains two types of transformation which are
both derived from an abstract base class called Transformation which in
turn is derived from SBase. The Transformation class does not add any
new attributes to SBase. From Transformation we derive a class Simple-
Transformation which has some attributes to specify translational (tx,ty,tz),
rotational (rx,ry,rz) and scaling (sy,sy,sz) transformations for all three axes.
All attributes are double values and optional. The default values are 1.0 for
the three scaling attributes and 0.0 for the other six attributes. The Sim-
pleTransformation will probably cover 99% of what users need, but in case
this is not enough, we have a second type of transformation, the AffineTrans-
formation. The AffineTransformation specifies a 4x3 transformation matrix.
The parameters are aligned in rows with 4 parameters each. The parameters
are called a0,al,a2,a3 for row one b0,b1,b2,b3 for row 2 and c0,cl,c2,c3 for
row 3. All parameters are optional and the defaults are such that the identity
matrix results.

Transformation

SimpleTransformation

[w]
[w]

t+tx: double =
t+ty: double =
t+tz: double
t+rx: double
try: double
t+rz: double =
+sx: double
+sy: double
t+sz: double =

RO OOOCoOo
OO O o o oo o

AffineTransformation

+a0: double =
t+al: double =
t+a2: double =
+a3: double =
+b0: double =
t+bl: double =
+b2: double =
+b3: double =
+c0: double =
t+cl: double =
t+c2: double =
+c3: double =

J—
]

oOr oo ook o oo
OO oo OO0 oood

<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="sl2:5Base">

<xsd:

sequence>

<xsd:element name="transformation" type="sl2:Transformation" minOccurs="

</xsd:sequence>
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

name="id" type="s12:8SId"/>

name="x" type="xsd:double"/>
name="y" type="xsd:double"/>

name="z" type="xsd:double" use="optional" default="0.0"/>
name="width" type="xsd:double"/>
name="height" type="xsd:double"/>
name="depth" type="xsd:double" use="optional" default="0.0"
name="renderObject" type="sl2:SId"/>

<xsd:complexType name="SimpleTransformation">
<xsd:complexContent>
<xsd:extension base="sl2:Transformation">

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

name="tx"
name="ty"
name="tz"
name="rx"
name="ry"
name="rz"
name="gx"
name="sy"
name="gz"

type="xsd:
type="xsd:
type="xsd:
type="xsd:
type="xsd:
type="xsd:
type="xsd:
type="xsd:
type="xsd:

double"
double"
double"
double"
double"
double"
double"
double"
double"

use="optional"
use="optional"
use="optional"
use="optional"
use="optional"
use="optional"
use="optional"
use="optional"
use="optional"

default="0.
default="0.
default="0.
default="0.
default="0.
default="0.
default="1.
default="1.
default="1.

\\\\>\\\<

A\

\4

\4

\

A\

\4

\4

\

O O O OO O O o o

<xsd:complexType name="AffineTransformation'">
<xsd:complexContent>
<xsd:extension base="sl2:Transformation">

<xsd:attribute name="a0" type='"xsd:double" use="optional" default="1.
<xsd:attribute name="al" type='"xsd:double" use="optional" default="0.
<xsd:attribute name="a2" type='"xsd:double" use="optional" default="0.
<xsd:attribute name="a3" type="xsd:double" use="optional" default="0.
<xsd:attribute name="b0" type="xsd:double" use="optional" default="0.
<xsd:attribute name="bl" type="xsd:double" use="optional" default="1.
<xsd:attribute name="b2" type="xsd:double" use="optional" default="0.
<xsd:attribute name="b3" type='"xsd:double" use="optional" default="0.
<xsd:attribute name="c0" type="xsd:double" use="optional" default="0.
<xsd:attribute name="cl" type="xsd:double" use="optional" default="0.
<xsd:attribute name="c2" type="xsd:double" use="optional" default="1.
<xsd:attribute name="c3" type='"xsd:double" use="optional" default="0.

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<Compartment> Layout Information

\

\4

A\

\%

\4

\4

\

A\

\4

\4

\4

O OO O OO O OO o oo

The CompartmentGlyph class is derived from GraphicalObject and has the
same attributes. Additionally it has an optional reference to the id of the
corresponding compartment in the model. Since the compartment id is op-
tional, the user can specify compartments in the layout that are not part of
the model.

CompartmentGlyph

tcompartment: SId = NULL

XML Schema representation:

<xsd:complexType name="CompartmentGlyph">

<xsd:complexContent>
<xsd:extension base="sl2:GraphicalObject">
<xsd:attribute name="compartment" type="s12:SId" use="optional"/>
</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

example:

10

<compartment id="compartment" volume="1"/>

<sl2:1list0fCompartmentGlyphs>
<sl2:compartmentGlyph id="cGlyph" compartment="compartment"
x="10.0" y=n10.on w="60" h=||5ou/>
</sl12:1ist0OfCompartmentGlyphs>

<Species> Layout Information

Since an shml document can contain species that don’t appear in any re-
action a species can have zero or more representations on screen which are
represented by <speciesGlyph> and are grouped in a <listOfSpeciesGlyphs>
tag. In addition to the attributes from GraphicalObject, the speciesGlyph
object has a species attribute which is the id of the corresponding species
object in the model. The species attribute is optional to allow the program
to specify species representations that do not have a direct correspondence
in the model. This might be useful if some pathway has been collapsed, but
is still treated by layout programs.

SpeciesGlyph

+species: SId = NULL

XML Schema representation:

<xsd:complexType name="SpeciesGlyph">

<xsd:complexContent>
<xsd:extension base="sl2:GraphicalObject">
<xsd:attribute name="species" type="sl12:SId" use="optional"/>
</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

example:

11

<species id="ATP" compartment="compartment" initialAmount="0">

<sl2:1ist0fSpeciesGlyphs>
<sl2:speciesGlyph id="ATP_Glyph" species="ATP" x="295.0" y="123.0" w="16.0"/>

</sl2:1list0fSpeciesGlyphs>

<Reaction> Layout Information

The reaction layout is now also a subclass of GraphicalObject, therefore it
has a defualt bounding box attribute. This differs from the last versions
of this document, where the reaction layout consisted of two pseudo nodes.
Actually this is only a renaming of attributes to make it more consistent
with compartment and species layout information. The two points given by
the bounding box can still be interpreted as being the two pseudo nodes
of a reaction. The reaction attribute specifies the id of the corresponding
reaction in the model. Again, this reference is optional. The ReactionGlyph
also holds a listOfSpeciesReferenceGlyphs (see below) which correspond to
the layout representations of the reactants of the reaction in the model.

ReactionGlyph

+reaction: SId = NULL
tspeciesReferences: SpeciesReferenceGlyph[l..]

Figure 2: Inheritance tree for the layout and render classes

XML Schema representation:

<xsd:complexType name="ListOfSpeciesReferenceGlyphs">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:sequence>
<xsd:element name="speciesReferenceGlyph" type="sl2:SpeciesReferenceGlyph"
minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>

12

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="ReactionGlyph">
<xsd:complexContent>
<xsd:extension base="sl2:GraphicalObject">
<xsd:sequence>
<xsd:element name="listOfSpeciesReferenceGlyphs"
type="s12:List0fSpeciesReferenceGlyphs"
minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="reaction" type="s12:SId" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

example:

<reaction id="reaction_0" reversible="false">
<listOfReactants>
<speciesReference species="P_i" stoichiometry="1"/>

</reaction>

<sl2:1listOfReactionGlyphs>
<sl2:reactionGlyph id="reaction_O_Glyph" reaction="reaction_0"
x1="119.0" y1="166.0" x2="120.0" y2="183.0"/>

</sl12:1list0OfReactionGlyphs>

<SpeciesReference> Layout Information

The graphical connection between a speciesGlyph and a reactionGlyph (which
would be an arrow or some curve in most cases) is represented by the species-

13

ReferenceGlyph object. A listOfSpeciesReferenceGlyphs is contained
in a reactionGlyph.

SpeciesReferenceGlyph

t+speciesGlyph: SId = NULL
t+speciesReference: SId = NULL
trole: string = NULL

tcurve: Curve = NULL

The speciesReferenceGlyph has a speciesGlyph attribute that con-
tains the id of the graphical object that is to be connected to the reac-
tionGlyph. This can be the id of a graphical representation of a species (as
defined in the <listOfSpeciesGlyphs>) or the id of a group (see below). The
speciesReference attribute refers to a speciesReference in the model and
is optional. Since species references in shml level 1 as well as level 2 do not
have ids, we chose to put a new tag called id which has an attribute called id
that is of type sl2:SId into the annotation part of the corresponding Species-
Reference element. This tag has to be unique within the global namespace of
the SBML model and can thus be used to reference a given species reference.
The role attribute is used to specify how the species reference should be dis-
played. Allowed values are substrate, product, sidesubstrate, sideproduct,
modifier, activator and inhibitor. This attribute is optional and should only
be necessary if the optional speciesReference attribute is not given or if the
respective information from the model needs to be overridden. The values
substrate and product are used if the species reference is a main product or
substrate in the reaction. sidesubstrate and sideproduct are used for stuff
like ATP, NAD+, etc. that some renderers might choose to display as side
reactants. activator and inhibitor are modifiers where their influence on
the reaction is known and modifier is a more general term if the influence is
unknown or changes during the course of the simulation. This list is probably
not exhaustive and will be updated as needed. Future version of SBML may
very well have an id for the SpeciesReference objects as well as some kind
of role attribute. If this is the case, we will drop both attributes here since
they are no longer necessary.

So far we have defined which graphical objects should be connected to the
reaction glyph in which way. This is the minimum information that a render
program with biochemical knowledge needs to render the reaction layout. For
generality two alternative ways to specify more detailed layout information
are provided. In most cases the relation of a species to a reaction will be
graphically represented by a curve. In this case a curve tag that contains a
listOfCurveSegments can be used. The listOfCurveSegments contains

14

an arbitrary number of curve segments. For now we provide the definitions for
two types of curve segments (LineSegment and CubicBezier) but leave it
open if this should in future be restricted to only one type or even generalized
to more different line types. All segment types, which is just CubicBezier so
far, are derived from the LineSegment type. The type of the curve segment
has to be specified with a xsi:type attribute in the curveSegment tag. The
LineSegment just specifies the start and the end point of a line segment which
should be a common feature of all types of curve segments, the CubicBezier
additionally defines two control points needed to specify a cubic Bezier curve
segment. If the curve attribute is specified this takes precedence over the
bounding box defined by the attributes of the GraphicalObject from which
SpeciesReferenceGlyph inherits.

Curve

+curveSegments: LineSegment[l..]

LineSegment

+x1: double
+v1l: double

t+z1l: double = 0.0
+x2: double
+v2: double
t+z2: double = 0.0

CubicBezier

+x3: double
+y3: double
+z3: double = 0.0
+x4: double
+v4: double
+z4: double = 0.0

XML Schema representation:

<xsd:complexType name="LineSegment">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:attribute name="x1" type="xsd:double"/>
<xsd:attribute name="y1" type="xsd:double"/>
<xsd:attribute name="zl1" type="xsd:double" use="optional" default="0.0"/>
<xsd:attribute name="x2" type="xsd:double"/>
<xsd:attribute name="y2" type="xsd:double"/>
<xsd:attribute name="z2" type="xsd:double" use="optional" default="0.0"/>

15

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="CubicBezier">
<xsd:complexContent>
<xsd:extension base="sl2:LineSegment">
<xsd:attribute name="x3" type="xsd:double"/>
<xsd:attribute name="y3" type="xsd:double"/>
<xsd:attribute name="z3" type="xsd:double" use="optional" default="0.0"/>
<xsd:attribute name="x4" type="xsd:double"/>
<xsd:attribute name="y4" type="xsd:double"/>
<xsd:attribute name="z4" type="xsd:double" use="optional" default="0.0"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="ListOfCurveSegments">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:sequence>
<xsd:element name="curveSegment" type="sl2:LineSegment"
minOccurs="1" maxQOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="Curve">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:sequence>
<xsd:element name="listOfCurceSegments" type="sl2:List0fCurveSegments"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="RoleString">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="substrate"/>
<xsd:enumeration value="product"/>
<xsd:enumeration value="sidesubstrate"/>
<xsd:enumeration value="sideproduct"/>
<xsd:enumeration value="modifier"/>
<xsd:enumeration value="activator"/>
<xsd:enumeration value="inhibitor)"/>
</xsd:restriction>
</xsd:simpleType>

16

<xsd:complexType name="SpeciesReferenceGlyph">

<xsd:complexContent>
<xsd:extension base="sl2:GraphicalObject">
<xsd:sequence>

<xsd:element name="curve" type="sl2:Curve" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="speciesGlyph" type="s12:SId" use="optional"/>
<xsd:attribute name="speciesReference" type="s12:SId" use="optional"/>
<xsd:attribute name="role" type="sl2:RoleString" use="optional"/>
</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

example:

<sl2:speciesGlyph id="P_iGlyph" species="P_i_s1" x="0.0" y="1.8"
w="1.0" h="1.0"/>

<sl2:reactionGlyph id="reaction_O_Glyph" reaction="reaction_0"
x1="2.3" y1="1.0" x2="3.0" y2="1.0">
<sl2:1list0fSpeciesReferenceGlyphs>
<sl2:speciesReferenceGlyph id="SP1_Glyph" speciesGlyph="P_iGlyph"
speciesReference="P_i_sri1">
<sl2:curve>
<s12:1ist0fCurveSegments>
<sl2:curveSegment xsi:type="sl2:CubicBezier" x1="0.0" y1="1.8"
x2="0.3" y2="0.8"
cx1="0.1" cy1="1.9" cx2="0.3" cy2="0.7"/>
<sl2:curveSegment xsi:type="sl2:LineSegment" x1="0.3" y1="0.8"
x2="2.3" y2="1.0" />
<sl2:/list0fCurveSegments>
<sl2:/curve>
</sl2:speciesReferenceGlyph>

</s12:1ist0fSpeciesReferenceGlyphs>
</sl2:reactionGlyph>

17

Grouping Information

In this specification, we added the possibility to group several representation
objects. This is useful for editors that need to know which objects should be
moved together when doing drags. Another possibility one gets with grouping
is to group several objects together and have just one relationGlyph object
for the whole group. E.g. someone want to display a reaction as A+B —>
C+D in this case, he would group the species reference representations for
the substrates and the additional graphical object that represents the '+’
sign and adds the layoutGlyph for the connection to the reaction. Likewise
he would do for the products. Each group object has an id which can be
referenced in a reaction representation as a species reference representation.
Each group consists of two or more components which have an attribute
called ref that is a reference to the graphical object that is to be added
to the group. Examples will follow. The Component class does not need
to be implemented as a class since it can be implemented as a list of Slds
in the LayoutGroup class. Therefore Component is missing from the UML
diagram.

LayoutGroup

+id: SId
tcomponents: SId[1l..]

XML Schema representation:

<xsd:complexType name="Component">

<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:attribute name="ref" type="sl12:SId"/>
</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="LayoutGroup">
<xsd:complexContent>
<xsd:extension base="sl2:SBase">
<xsd:sequence>
<xsd:element name="component" type="sl2:Component" minOccurs="2"
maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="id" type="s12:SId"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

18

Further Plans

We already started on the definition of the render part of this proposal. Until
is has reached a certain level of maturity we will keep those two documents
separate. Eventually though, they will end up in one common proposal
document. This document is a work in progress and can be subject to changes
any time. We are glad for any suggestions, corrections or hints to further
improve these extensions. Hopefully with some help we could come up with
a set of extensions that would suite the needs of many applications developed
in this area. This specification was intended for the use with sbml level 2.
With some slight changes it can also be used with sbml level 1 documents.
Actually the only major changes that would have to be made is to change
all references to SId to be references to SNames.

Example File

Last but not least, we include a small sample file to illustrate and com-
plement the paragraphs above. Note that both the picture and the example
code were manually modified. There does not exist an actual implementation
of this latest version of our proposal yet. The model consists of two reac-
tions. Which are the first reaction of glycolysis where glucose is converted
to glucose-6-phosphate (G6P) and the reverse reaction of gluconeogenesis
where glucose-6-phosphate is hydrolyzed to glucose. We did not include any
coordinates in the third dimension, since we are only working in 2D space
so far. As can be seen in the screenshot, the glucose SpeciesReference has
two representational objects on screen whereas glucose-6-phosphate only has
one. This difference is reflected in the file where the glucose species has two
nodes in the listOfNodes whereas G6P only has one. This example show not
all but only the main features of our proposal.

<?xml version="1.0" encoding="UTF-8"7>
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sl2="http://projects.eml.org/bcb/sbml/level2"
xsi:schemaLocation="http://projects.eml.org/bcb/sbml/level?2
http://projects.eml.org/bcb/sbml/level2/layout2.xsd">
<model name="Untitled">
<listOfCompartments>
<compartment id="compartment" volume="1"/>
</1list0fCompartments>
<listOfSpecies>
<species id="ATP" compartment="compartment" initialAmount="0"/>
<species id="P_i" compartment="compartment" initialAmount="0"/>

19

Glucase Glucose

ATP

ADP

Figure 3: One possible rendering of the example layout. This is somewhat
modified by hand because we do not have a working implementation of the
last version of our proposal.

<species id="Glucose" compartment="compartment" initialAmount="0"/>
<species id="ADP" compartment="compartment" initialAmount="0"/>
<species id="H20" compartment="compartment" initialAmount="0"/>
<species id="G6P" compartment="compartment" initialAmount="0"/>
</list0fSpecies>
<listOfReactions>
<reaction id="reaction_0" reversible="false">
<listOfReactants>
<speciesReference species="H20" stoichiometry="1">
<annotation>
<sl2:id id="H20"/>
</annotation>

</speciesReference>

<speciesReference species="G6P" stoichiometry="1">
<annotation>
<sl2:id id="G6P_1"/>
</annotation>

20

</speciesReference>
</listOfReactants>
<listOfProducts>
<speciesReference species="P_i" stoichiometry="1">
<annotation>
<sl2:id id="P_i_sri1"/>
</annotation>
</speciesReference>
<speciesReference species="Glucose" stoichiometry="1">
<annotation>
<sl2:id id="Glucose_1"/>
</annotation>
</speciesReference>
</1ist0fProducts>
</reaction>
<reaction id="reaction_1" reversible="false">
<listOfReactants>
<speciesReference species="ATP" stoichiometry="1">
<annotation>
<sl2:id id="ATP"/>
</annotation>
</speciesReference>
<speciesReference species="Glucose" stoichiometry="1">
<annotation>
<s12:id id="Glucose_2"/>
</annotation>
</speciesReference>
</list0fReactants>
<listO0fProducts>
<speciesReference species="ADP" stoichiometry="1">
<annotation>
<sl2:id id="ADP"/>
</annotation>
</speciesReference>
<speciesReference species="GEP" stoichiometry="1">
<annotation>
<sl2:id id="G6P_2"/>
</annotation>
</speciesReference>
</1ist0fProducts>
</reaction>
</list0fReactions>
</model>
<annotation>
<sl12:1list0fLayouts xmlns:sl2="http://projects.eml.org/bcb/sbml/level2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="http://projects.eml.org/bcb/sbml/level2\
http://projects.eml.org/bcb/sbml/level2/layout2.xsd">
<sl2:layout id="layoutl" width="320" height="270">

21

<sl2:1istOfCompartmentGlyphs>
<sl2:compartmentGlyph id="compGlyph" compartment="compartment"
x="10.0" y="10.0" w="60" h="50"/>
</sl2:1list0fCompartmentGlyphs>
<sl2:1ist0fSpeciesGlyphs>
<sl2:speciesGlyph id="ATP_Glyph" species="ATP" x="295.0" y="123.0"
w="16.0" h="16.0"/>
<sl2:speciesGlyph id="P_iGlyph" species="P_i" x="63.0" y="124.0"
w="16.0" h="16.0"/>
<sl2:speciesGlyph id="Glucose_Glyphl" species="Glucose" x="146.0" y="106.0"
w="16.0" h="16.0"/>
<sl2:speciesGlyph id="Glucose_Glyph2" species="Glucose" x="209.0" y="107.0"
w="16.0" h="16.0"/>
<sl2:speciesGlyph id="ADP_Glyph" species="ADP" x="298.0" y="214.0"
w="16.0" h="16.0"/>
<sl2:speciesGlyph id="H20_Glyph" species="H20" x="67.0" y="224.0"
w="16.0" h="16.0"/>
<sl2:speciesGlyph id="G6P_Glyph" species="G6P" x="180.0" y="241.0"
w="15.0" h="16.0"/>
</sl2:1list0fSpeciesGlyphs>
<sl2:1istO0fReactionGlyphs>
<sl2:reactionGlyph id="reaction_O_Glyph" reaction="reaction_0"
x="120.0" y="183.0" width="119.0" height="166.0">
<sl2:1list0fSpeciesReferenceGlyphs>
<sl2:speciesReferenceGlyph id="SP1_Glyph" speciesGlyph="P_i_Glyph"
speciesReference="P_i_sri"/>
<sl2:speciesReferenceGlyph id="SP2_Glyph" speciesGlyph="Glucose_Glyphl"
speciesReference="Glucose_1" role="substrate"/>
<sl2:speciesReferenceGlyph id="SP3_Glyph" speciesGlyph="H20_Glyph"
speciesReference="H20"/>
<sl2:speciesReferenceGlyph id="SP4_Glyph" speciesGlyph="G6P_Glyph"
speciesReference="G6P_1">
<sl2:curve>
<sl2:1list0fCurveSegments>
<sl2:curveSegment xsi:type="sl2:CubicBezier" x1="180" y1="241"
x2="120" y2="183"
cx1="1565" cy1="230" cx2="120" cy2="200"/>
<s12:/list0fCurveSegments>
<sl2:/curve>
</sl2:speciesReferenceGlyph>
</sl2:1list0fSpeciesReferenceGlyphs>
</sl2:reactionGlyph>
<sl2:reactionGlyph id="reaction_1_Glyph" reaction="reaction_1"
x1="256.0" y1="166.0" x2="257.0" y2="183.0">
<sl2:1ist0fSpeciesReferenceGlyphs>
<sl2:speciesReferenceGlyph id="SP5_Glyph" speciesGlyph="ATP_Glyph"
speciesReference="ATP"/>
<sl2:speciesReferenceGlyph id="SP6_Glyph" speciesGlyph="Glucose_Glyph2"
speciesReference="Glucose_2"/>

22

<sl2:speciesReferenceGlyph id="SP7_Glyph" speciesGlyph="ADP_Glyph"
speciesReference="ADP"/>
<sl2:speciesReferenceGlyph id="SP8_Glyph" speciesGlyph="G6P_Glyph"
speciesReference="G6P_2">
<sl2:curve>
<sl2:1ist0fCurveSegments>
<sl2:curveSegment xsi:type="sl2:CubicBezier" x1="257" y1="183"
x2="180" y2="241"
cx1="257" cy1="200" cx2="210" cy2="230"/>
<s12:/list0fCurveSegments>
<sl2:/curve>
</sl2:speciesReferenceGlyph>
</s12:1list0fSpeciesReferenceGlyphs>
</sl2:reactionGlyph>
</sl2:1list0fReactionGlyphs>
<sl2:1ist0fAdditionalGraphicalObjects>
<textLabel id="labell" x="100.0" y="85.0"
w="180.0" h="25.0">Reaction Layout</textLabel>
</s12:1ist0fAdditionalGraphicalObjects>
</sl2:layout>
</sl2:list0fLayouts>
</annotation>
</sbml>

Contact Information

To contact any of the authors, send an email to:
FIRSTNAME.LASTNAME@eml.villa-bosch.de

e.g.
ralph.gauges@eml.villa-bosch.de

Todo

e We need many more examples with nice pictures to go with them. This
probably has to wait until the implementation is finished.

e Implement this proposal on top of libsbml with wrappers for Java,
Python and C++

23

List Of Changes

Version 1.2

e Group class has been renamed to LayoutGroup to avoid future conflict
with the abstract Group class of the render part

e This documents contains some new attributes to objects that are needed
to connect this layout information part to the actual render informa-
tion. All Glyph objects are now derived from GraphicalObject. Graph-
icalObject has the information for a bounding box and the reference to
the id of the connected render object. A transformation to transform
the render object prior to rendering can be given as well. GraphicalOb-
ject is also used in the listOfAdditionalGraphicalObjects to specify ob-
jects to include in the layout that have nothing to do with a chemical
model. It could for example be used to draw some legend.

e We took the Transformation, SimpleTransformation and AffineTrans-
formation from the render document and included them here as well
since they are needed for GraphicalObject (see last point.)

e Since ReactionGlyph is now derived from GraphicalObject, the two
points specified now have the notation of a bounding box and they can
be seen as such. On the other hand, programs can still interpret them
as two pseudo nodes as was the default so far. Maybe there should be
a tag that specifies which it is.

e SpeciesReferenceGlyph, derived from GraphicalObject now includes all
the attributes to specify a bounding box. Additionally it can hold a
Curve object which overrides the information on the bounding box.

Version 1.1b

e Document now states that the default unit for the diagram is pt.

e Layout object gets three attributes width, height and depth.

Version 1.1a

e Curve Segments can now hold 3D information.

24

Version 1.1

Added new edge information to the speciesRefernceGlyph. Edges can
now be build from lists of straight lines and cubic bezier segments.

Added the possibility of grouping of several graphical representations.
These groups can then be used in the graphical representation instead
of a SpeciesReferenceGlyph.

Changed all tag names ending with GR(s) to to names ending with
Glyph(s)

Dropped refRole attribute from SpeciesReferenceGlyph in favor of an
id in the annotations of the SpeciesReference.

Changed refSpeciesGlyph attribute to ref so it is more consistent with
the rest of the layout objects.

Fixed the screenshot and corresponding example to correct the error in
the pathway. Sample included does still not fully represent the screen-
shot with this new specification.

speciesReferences can now be referenced by the speciesReference at-
tribute of the speciesReferenceGlyph. The species reference id that is
needed for this is added into the annotations tag of the speciesReference
tag in the model.

The naming of references is now more shml like since the attributes are
called after the object they reference.

References

1]

2]

3]

System Biology =~ Markup Language Level 1 Website
(http://www.sbml.org/sbml/docs/index.html)

Michael Hucka, Andrew Finney, Herbert Sauro, Hamid
Bolouri: ~ Systems Biology Markup Language (SBML) Level
1: Structures and Facilities for Basic Model Definitions
(http:/ /www.sbml.org/sbml/docs/papers/sbml-level-1/html/sbml-
level-1.html)

Hucka M., Finney A., Sauro H.M., Bolouri H., Doyle J.C., Kitano H.,
Arkin A.P., Bornstein B.J., Bray D., Cornish-Bowden A., Cuellar A.A.,
Dronov S., Gilles E.D., Ginkel M., Gor V., Goryanin I.I., Hedley W.J.,

25

Hodgman T.C., Hofmeyr J.H., Hunter P.J., Juty N.S., Kasberger J.L.,
Kremling A., Kummer U., Le Novere N., Loew L.M., Lucio D., Mendes
P., Minch E., Mjolsness E.D., Nakayama Y., Nelson M.R.., Nielsen P.F.,
Sakurada T., Schaff J.C., Shapiro B.E., Shimizu T.S., Spence H.D.,
Stelling J., Takahashi K., Tomita M., Wagner J., Wang J. (2003) The
systems biology markup language (SBML): a medium for representa-

tion and exchange of biochemical network models, Bioinformatics, 19,
524-31.

[4] JDesigner Website (http://www.cds. caltech.edu/ hsauro/JDesigner.htm)

[5] Herbert Sauro: JDesigner SBML Annotation
(http://www.cds. caltech.edu/ hsauro/JDSBMLEz.pdf)

26

