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-Concepts

» Modeling / simulation of biochemical reaction networks
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biochemical reaction network

E. coli:
#genes (total)=4288
#genes (metab.)=660

#metabolites=442

#enzymes (metab.)=697
#reactions (metab.)=739

mathematical description

size and complexity of biochem. reaction networks

need for complexity reduction methods in order to:

-enable efficient computation of system dynamics
-facilitate identification of dynamical key features




-Concepts
» Complexity reduction

- Structural approaches: based on evaluation of network structure /

topology only - limited analytical scope

- dynamical approaches: explicitly considering kinetics of individual
processes / reactions - in principle full analytical scope

problem: existing methods rely on specific restrictions on system
dynamics like the steady state assumption (e.g. SNA) or the quasi-
steady state approximation (QSSA) - limited applicability

» Time scale decomposition (TSD)
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*fast’ processes t<<T
~relaxed / exhausted

-dynamical network partitioning
according to characteristic
multiple time scales of cellular
processes spanning several
orders of magnitude



-Concepts

» Time scale decomposition (TSD)

-dynamics of simple enzyme catalyzed reaction
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taking place on two largely differing time scales S+tE=C—>P+E
fast
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slow :
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-approach LDM for restricted range of
dynamics only
-partitioning based on identification of
reactive intermediates / fast reactions

-conventional TSD approaches:
quasi-steady state approx. (QSSA)
quasi-equilibrium approx. (QEA)




*Method / Objectives

» TSD approach for dynamical complexity reduction

- systematic reduced description for arbitrary biochemical reaction
networks (ODE models)

- working independent of the assumption of a specific system dynamics /
dynamical regime (e.g. steady state)

- fully automated network decomposition without a priori identification of
reactive intermediates / fast reactions (no expert knowledge)

- systematic accuracy criterion / error control mechanism - user

- efficient implementation / applicable for spatially non-homogeneous
model systems

» approach based on ILDM method by U. Maas and B. Pope (combustion)



*Method / TSD approach

1) starting point: dig ) _ @), B), t=0) —¢, ODE system (dim. N)
2) local system reduction / decomposition
- linearization d(“;?) = f(E;_)+JEr (c(®)-c), J. = aj; (f") Jacobian matrix
(5

¥

- basis transformation (5—”—>x, f—"_>g)
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fast
: : e 1
reordering of S according to characteristic time scales t, = RS
»decoupling of reaction system into:

-n active (slow) processes / modes

-N-n inactive (fast) processes
‘:_f ) _’.5' ow ~
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‘Method / TSD approach

2) local system reduction / decomposition

- choice of slow / fast partitioning

»ideal case: g,,=0 ®
fast time scales fully relaxed,for given
partitioning n point located on Intrinsic
Low-dimensional manifold (ILDM)

phase space (3 dim.)

>realistic case: &u:70 @
fast time scales not fully relaxed,
steady state accuracy of reduced system represen-
tation for given partitioning n depends
on size of deviation from ILDM
—> error criterion / tolerance (user)

]

number of active modes determined in
iterative procedure

3) time propagation / integration
- local system reduction: ODE system (dim N) - DAE system (n ODEs, N-n AEs)

» full algorithm: for nonlinear systems - sequence of local decomposition and
propagation steps




*Application / Results

» TSD case study of Peroxidase-Oxidase (PO) reaction network

-kinetic model of PO reaction network coupled

to activation of an enzyme E:
reaction rate expression constant
(1) NADH + Oz + HT — NAD™ + H20, k:1 [NADH][O-] 3.0°
(2) H205 + Per®" — col ka[H205][Per®™) 1.8 x 10" @
(3) col + NADH — coll + NAD ks[col|[NADH] 4.0 x 10° ¢
(4) colI + NADH — Per®™ 4+ NAD ka[c oH} [NADH)| 2.6 x 10° ¢
(5) NAD + O2 — NAD' +0O; ks[NAD ]|[O-] 2.0 x 107 ¢
(6) Oy + Per®t — colII ke [O ][Per3+] 1.7 x 10° @
(7) 20 +2H" — H202 + 02 k7[05]? 2.0 x 107 ¢
(8) coIII + NAD — col + NAD" [coI[I] [NAD ] 11.0 x 107 @ I
(9) 2NAD — NAD> ko[NAD]? 5.6 x 107 ¢ "1
(10) Per®t + NAD — Per®t + NADT  kio[Per®t][NAD] 1.8 x 10° ¢
(11) Per*t + Oz — colIT k11 [Per**][O2] 1.0 x 10° ©
(12) — NADH k12 variable '
(13) O2(gas) — Oz (liquid) k13[O2]eq 4.4 x 10734 Jt
(—=13) Oz (liquid) — O2(gas) k_13[O2] 4.4 x1073 ¢ NAI;
—15
(14) Enzinget + Oy — Enzae <f]:§4+[<[302;]}5) 0.005  (k1a)
0.4 "¢(Ky)
(15) Enzact — Enzinact k1s[Enzact] 1.6 ¢
Detailed model of the Peroxidase-Oxidase (PO) reaction network coupled to the
activation of an enzyme Enz (“ in M~'s™ Y in M, ¢ in s7', @ [Og]eq = 1.2 x 107° M,

¢ [Enzact] << Enzinact = const.).

-production of reactive oxygen species (ROS)

—> important role in pathogen defense of activated
neutrophils

-large variety in dynamical behavior:

steady state - regular / relaxation oscillations - chaos




*Application / Results

» dynamics of the PO reaction network

- simulated time series for selected species of the PO reaction network
(k{,=0.129 uM/s)

dynamical capabilities depending
sensitively on NADH inflow rate
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*Application / Results

» time scale decomposition of the PO reaction network
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-time scales of processes
spanning 7- 8 orders of
magnitude

-number of active modes
reduced drastically along
trajectory: 11 >6-2/5-3
-nature of decomposition
depends sensitively on
specific dynamical regime
—>insight into reaction mech.
-reduced stiffness—> efficient
propagation



*Application / Results

> time scale decomposition of the PO reaction network
- analysis of the active processes / modes in terms of contributing

relaxation oscillation regime regular oscillation regime b _ T_1 g
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—> automated detection of
dynamical network
partitioning (dynamical
coupling / decoupling)
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Conclusions

» The presented TSD method based on the ILDM approach

Is well suited for the dynamical complexity reduction of biochemical
reaction networks even in demanding cases of complex system
dynamics

provides a fully automated, adapted dynamical network decomposition
for all dynamical regimes of nonlinear reaction systems

simplifies identification of dynamical key features of complex reaction
networks

can be adapted for efficient simulation of non-homogeneous reaction
systems in straightforward manner following discretization
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