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•Outline

� Concepts:
– Modeling / simulation of biochemical reaction networks
– Complexity reduction
– Time scale decomposition (TSD)

� Method: 
– an automated dynamical TSD approach

� Application / Results: 
– TSD in the Peroxidase-Oxidase (PO) reaction network

� Conclusions



•Concepts

� Modeling / simulation of biochemical reaction networks

cellular system biochemical reaction network mathematical description

E. coli:
#genes (total)=4288
#genes (metab.)=660
#enzymes (metab.)=697
#reactions (metab.)=739
#metabolites=442

size and complexity of biochem. reaction networks

need for complexity reduction methods in order to:
-enable efficient computation of system dynamics
-facilitate identification of dynamical key features



�Time scale decomposition (TSD)

� Complexity reduction
- structural approaches: based on evaluation of network structure / 

topology only � limited analytical scope
- dynamical approaches: explicitly considering kinetics of individual

processes / reactions � in principle full analytical scope
problem: existing methods rely on specific restrictions on system
dynamics like the steady state assumption (e.g. SNA) or the quasi-
steady state approximation (QSSA) � limited applicability

•Concepts
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orders of magnitude



•Concepts

� Time scale decomposition (TSD)
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LDM

-dynamics of simple enzyme catalyzed reaction
taking place on two largely differing time scales

-fast time scale: dynamics
in full 2d phase space
-slow time scale: trajectories
attracted by low-dimensional
manifold (LDM) � reduced
1d phase space

-conventional TSD approaches:
quasi-steady state approx. (QSSA)
quasi-equilibrium approx. (QEA)

-approach LDM for restricted range of 
dynamics only

-partitioning based on identification of 
reactive intermediates / fast reactions



•Method / Objectives

� TSD approach for dynamical complexity reduction

- systematic reduced description for arbitrary biochemical reaction
networks (ODE models)

- working independent of the assumption of a specific system dynamics / 
dynamical regime (e.g. steady state)

- fully automated network decomposition without a priori identification of
reactive intermediates / fast reactions (no expert knowledge)

- systematic accuracy criterion / error control mechanism � user

- efficient implementation / applicable for spatially non-homogeneous
model systems

� approach based on ILDM method by U. Maas and B. Pope (combustion)



•Method / TSD approach
1) starting point:

2) local system reduction / decomposition

- linearization

- basis transformation

ODE system (dim. N)

Jacobian matrix

Block-Diagonalization of J

reordering of S according to characteristic time scales

�decoupling of reaction system into:
-n active (slow) processes / modes
-N-n inactive (fast) processes



�ideal case:
fast time scales fully relaxed,for given
partitioning n point located on Intrinsic
Low-dimensional manifold (ILDM)

�realistic case:
fast time scales not fully relaxed,
accuracy of reduced system represen-
tation for given partitioning n depends
on size of deviation from ILDM 
� error criterion / tolerance (user)

•Method / TSD approach
2) local system reduction / decomposition

- choice of slow / fast partitioning

number of active modes determined in
iterative procedure

3) time propagation / integration
- local system reduction: ODE system (dim N) � DAE system (n ODEs, N-n AEs)

� full algorithm: for nonlinear systems � sequence of local decomposition and 
propagation steps



•Application / Results

� TSD case study of Peroxidase-Oxidase (PO) reaction network
-kinetic model of PO reaction network coupled
to activation of an enzyme E:

-production of reactive oxygen species (ROS)
� important role in pathogen defense of activated
neutrophils
-large variety in dynamical behavior:
steady state - regular / relaxation oscillations - chaos

reaction rate expression constant

(1) NADH + O2 + H+
−→ NAD+ + H2O2 k1[NADH][O2] 3.0 a

(2) H2O2 + Per3+
−→ coI k2[H2O2][Per3+] 1.8 × 107 a

(3) coI + NADH −→ coII + NAD· k3[coI][NADH] 4.0 × 105 a

(4) coII + NADH −→ Per3+ + NAD· k4[coII][NADH] 2.6 × 105 a

(5) NAD· + O2 −→ NAD+ + O−

2 k5[NAD·][O2] 2.0 × 107 a

(6) O−

2 + Per3+
−→ coIII k6[O

−

2 ][Per3+] 1.7 × 106 a

(7) 2O−

2 + 2H+
−→ H2O2 + O2 k7[O

−

2 ]2 2.0 × 107 a

(8) coIII + NAD·

−→ coI + NAD+ k8[coIII][NAD·] 11.0 × 107 a

(9) 2NAD·

−→ NAD2 k9[NAD·]2 5.6 × 107 a

(10) Per3+ + NAD·

−→ Per2+ + NAD+ k10[Per3+][NAD·] 1.8 × 106 a

(11) Per2+ + O2 −→ coIII k11[Per2+][O2] 1.0 × 105 a

(12) −→ NADH k12 variable

(13) O2(gas) −→ O2(liquid) k13[O2]eq 4.4 × 10−3c,d

(−13) O2(liquid) −→ O2(gas) k
−13[O2] 4.4 × 10−3 c

(14) Enzinact + O−

2 −→ Enzact
k14[O−

2
]5

(K5

f
+[O−

2
]5)

0.005 a (k14)

0.4 b,e(Kf )
(15) Enzact −→ Enzinact k15[Enzact] 1.6 c

Detailed model of the Peroxidase–Oxidase (PO) reaction network coupled to the
activation of an enzyme Enz (a in M−1s−1, b in M , c in s−1, d [O2]eq = 1.2× 10−5 M ,
e [Enzact] << Enzinact ≈ const.).



•Application / Results

� dynamics of the PO reaction network
- simulated time series for selected species of the PO reaction network

(k12=0.129 µM/s)

dynamical capabilities depending
sensitively on NADH inflow rate

t<3200s: transient large amplitude
relaxation oscillations

t>3200s: sustained small amplitude
regular oscillations

t�3200s: dynamical switching off 
of enzyme activation
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•Application / Results

� time scale decomposition of the PO reaction network

10-2
10-1
100
101
102
103
104
105

tim
e 

sc
al

es
 [s

]

0 500 1000 1500 2000 2500 3000 3500 4000 4500

propagation time [s]

0
2
4
6
8

10

N
(a

ct
iv

e)

0

4

8

12

O
2 [µ

M
]

0

0,04

0,08

0,12

O
2-  [µ

M
]

-time scales of processes
spanning 7- 8 orders of
magnitude

-number of active modes
reduced drastically along
trajectory: 11 ���� 6 - 2 / 5 - 3

-nature of decomposition
depends sensitively on
specific dynamical regime
�insight into reaction mech.
-reduced stiffness� efficient
propagation



•Application / Results

� time scale decomposition of the PO reaction network

- analysis of the active processes / modes in terms of contributing
species
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N
A

D
H O

2

Pe
r3+

Pe
r2+

N
A

D
.

O
2-

co
I

co
II

I
H

2O
2

E
nz

0

5

10

15

20

25

regular oscillation regime cx
�� ⋅= −1

slowr,Tslow

� automated detection of
dynamical network
partitioning (dynamical
coupling / decoupling)



•Conclusions

� The presented TSD method based on the ILDM approach

- is well suited for the dynamical complexity reduction of biochemical
reaction networks even in demanding cases of complex system
dynamics

- provides a fully automated, adapted dynamical network decomposition
for all dynamical regimes of nonlinear reaction systems

- simplifies identification of dynamical key features of complex reaction
networks

- can be adapted for efficient simulation of non-homogeneous reaction
systems in straightforward manner following discretization
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