Dynamical complexity reduction in biochemical reaction networks

-a time scale decomposition approach-

Jürgen Zobeley

29 July 2004

•Outline

Concepts:

- Modeling / simulation of biochemical reaction networks
- Complexity reduction
- Time scale decomposition (TSD)
- > Method:
 - an automated dynamical TSD approach
- > Application / Results:
 - TSD in the Peroxidase-Oxidase (PO) reaction network

Conclusions

Concepts

Modeling / simulation of biochemical reaction networks

<u>E. coli:</u> #genes (total)=4288 #genes (metab.)=660 #enzymes (metab.)=697 #reactions (metab.)=739 #metabolites=442 size and complexity of biochem. reaction networks

need for *complexity reduction* methods in order to: -enable efficient computation of system dynamics -facilitate identification of dynamical key features

Concepts

Complexity reduction

- structural approaches: based on evaluation of network structure / topology only → limited analytical scope
- *dynamical* approaches: explicitly considering kinetics of individual processes / reactions → in principle full analytical scope
 problem: existing methods rely on specific <u>restrictions</u> on system dynamics like the *steady state* assumption (e.g. SNA) or the *quasi-steady state approximation* (QSSA) → limited applicability

Time scale decomposition (TSD)

-*dynamical* network partitioning according to *characteristic multiple time scales* of cellular processes spanning several orders of magnitude

Concepts

Time scale decomposition (TSD)

-dynamics of simple enzyme catalyzed reaction taking place on *two largely differing* time scales

 $S + E \rightleftharpoons C \rightarrow P + E$

-fast time scale: dynamics in <u>full</u> 2d phase space
-slow time scale: trajectories attracted by low-dimensional manifold (LDM) → reduced
1d phase space

-approach LDM for restricted range of dynamics only

-partitioning based on identification of reactive intermediates / fast reactions

Method / Objectives

TSD approach for dynamical complexity reduction

- *systematic* reduced description for *arbitrary* biochemical reaction networks (ODE models)
- working *independent* of the assumption of a specific system dynamics / dynamical regime (e.g. steady state)
- *fully automated* network decomposition without *a priori* identification of reactive intermediates / fast reactions (no expert knowledge)
- systematic accuracy criterion / *error control* mechanism \rightarrow user
- *efficient* implementation / applicable for spatially non-homogeneous model systems
- > approach based on ILDM method by U. Maas and B. Pope (combustion)

Method / TSD approach

1) starting point: $\frac{d\vec{c}(t)}{dt} = \vec{f}(\vec{c}(t),\vec{k}), \quad \vec{c}(t=0) = \vec{c}_0$ ODE system (dim. N)

2) local system reduction / decomposition

- linearization
$$\frac{d\vec{c}(t)}{dt} = \vec{f}(\vec{c}_r) + \mathbf{J}_{\vec{c}_r} \cdot (\vec{c}(t) - \vec{c}_r), \quad \mathbf{J}_{\vec{c}_r} = \frac{\partial f(\vec{c}_r)}{\partial \vec{c}_r}$$
 Ja

Jacobian matrix

- basis transformation $\left(\vec{c} \xrightarrow{\mathbf{T}_n^{-1}} \vec{x}, \vec{f} \xrightarrow{\mathbf{T}_n^{-1}} \vec{g}\right)$

$$\mathbf{T}_{n}^{-1} \cdot \mathbf{J} \cdot \mathbf{T}_{n} = \mathbf{S} = \begin{pmatrix} \mathbf{S}_{slow} & \mathbf{0} \\ \mathbf{0} & \mathbf{S}_{fast} \end{pmatrix} \quad \text{Block-Diagonalization of } \mathbf{J}$$

reordering of **S** according to characteristic *time scales* $\tau_i = \frac{1}{|\Re(S_{ii})|}$

decoupling of reaction system into: -n active (slow) processes / modes -N-n inactive (fast) processes

$$\vec{x} = \begin{pmatrix} \vec{x}_{slow} \\ \vec{x}_{fast} \end{pmatrix} = \mathbf{T}_n^{-1} \cdot \vec{c}, \quad \vec{g} = \begin{pmatrix} \vec{g}_{slow} \\ \vec{g}_{fast} \end{pmatrix} = \mathbf{T}_n^{-1} \cdot \vec{f} \qquad \qquad \frac{d\vec{x}_{slow}(t)}{dt} = \vec{g}_{slow}, \quad \frac{d\vec{x}_{fast}(t)}{dt} = \vec{g}_{fast}$$

Method / TSD approach

2) local system reduction / decomposition

- choice of slow / fast partitioning

➢ ideal case: $\vec{g}_{fast} = \vec{0}$ ● fast time scales <u>tully</u> relaxed, for given partitioning *n* point located on *Intrinsic Low-dimensional manifold (ILDM*)

➤ realistic case: $\vec{g}_{fast} \neq 0$ • fast time scales <u>not fully</u> relaxed, accuracy of reduced system representation for given partitioning *n* depends on size of deviation from ILDM → error criterion / tolerance (user)

number of active modes determined in *iterative procedure*

- 3) time propagation / integration
 - local system reduction: ODE system (dim N) \rightarrow DAE system (n ODEs, N-n AEs)
- ➢ <u>full algorithm:</u> for *nonlinear* systems → *sequence* of local decomposition and propagation steps

TSD case study of Peroxidase-Oxidase (PO) reaction network

-kinetic model of PO reaction network coupled to activation of an enzyme E:

reaction	rate expression	constant
$(1) NADH + O_2 + H^+ \longrightarrow NAD^+ + H_2O_2$	$k_1[NADH][O_2]$	$3.0^{\ a}$
$(2) H_2O_2 + Per^{3+} \longrightarrow coI$	$k_2[H_2O_2][Per^{3+}]$	1.8×10^{7} ^a
$(3) \ coI + NADH \longrightarrow coII + NAD^{\cdot}$	$k_3[coI][NADH]$	$4.0 \times 10^{5} a$
$(4) \ coII + NADH \longrightarrow Per^{3+} + NAD'$	$k_4[coII][NADH]$	2.6×10^{5} ^a
(5) $NAD^{\cdot} + O_2 \longrightarrow NAD^+ + O_2^-$	$k_5[NAD^{\cdot}][O_2]$	2.0×10^{7} ^a
(6) $O_2^- + Per^{3+} \longrightarrow coIII$	$k_6[O_2^-][Per^{3+}]$	1.7×10^{6} ^a
(7) $2O_2^- + 2H^+ \longrightarrow H_2O_2 + O_2$	$k_7[O_2^-]^2$	2.0×10^{7} ^a
$(8) \ coIII + NAD^{\cdot} \longrightarrow coI + NAD^{+}$	$k_8[coIII][NAD^{\cdot}]$	11.0×10^{7} ^a
$(9) \ 2NAD^{\cdot} \longrightarrow NAD_2$	$k_9[NAD^{\cdot}]^2$	5.6×10^{7} ^a
(10) $Per^{3+} + NAD^{-} \longrightarrow Per^{2+} + NAD^{+}$	$k_{10}[Per^{3+}][NAD^{\cdot}]$	$1.8 \times 10^{6} {}^{a}$
(11) $Per^{2+} + O_2 \longrightarrow coIII$	$k_{11}[Per^{2+}][O_2]$	1.0×10^{5} ^a
$(12) \longrightarrow NADH$	k_{12}	variable
(13) $O_2(gas) \longrightarrow O_2(liquid)$	$k_{13}[O_2]_{eq}$	$4.4 \times 10^{-3c,d}$
$(-13) O_2(liquid) \longrightarrow O_2(gas)$	$k_{-13}[O_2]$	$4.4 \times 10^{-3} c$
(14) $Enz_{inact} + O_2^- \longrightarrow Enz_{act}$	$\frac{k_{14}[O_2^-]^5}{(K_f^5 + [O_2^-]^5)}$	$0.005\ ^{a}\ (k_{14})$
	·	$0.4^{b,e}(K_f)$
(15) $Enz_{act} \longrightarrow Enz_{inact}$	$k_{15}[Enz_{act}]$	1.6 ^c

Detailed model of the Peroxidase–Oxidase (PO) reaction network coupled to the activation of an enzyme Enz (^a in $M^{-1}s^{-1}$, ^b in M, ^c in s^{-1} , ^d $[O_2]_{eq} = 1.2 \times 10^{-5} M$, ^e $[Enz_{act}] << Enz_{inact} \approx \text{const.}$).

-production of reactive oxygen species (ROS)
 → important role in pathogen defense of activated neutrophils

-large variety in dynamical behavior:

steady state - regular / relaxation oscillations - chaos

dynamics of the PO reaction network

- simulated time series for selected species of the PO reaction network (k_{12}=0.129 $\mu M/s)$

dynamical capabilities depending sensitively on NADH inflow rate

t<3200s: transient large amplitude relaxation oscillations

t>3200s: sustained small amplitude regular oscillations

t≈3200s: dynamical switching off of enzyme activation

time scale decomposition of the PO reaction network

- time scale decomposition of the PO reaction network
 - analysis of the active processes / modes in terms of contributing

Conclusions

The presented TSD method based on the ILDM approach

- is well suited for the dynamical complexity reduction of biochemical reaction networks even in demanding cases of complex system dynamics
- provides a fully automated, adapted dynamical network decomposition for all dynamical regimes of nonlinear reaction systems
- simplifies identification of dynamical key features of complex reaction networks
- can be adapted for efficient simulation of non-homogeneous reaction systems in straightforward manner following discretization

Acknowledgements

Colaboration partners:

Ursula Kummer
 Bioinformatics and Computational Biochemistry
 EML Research gGmbH
 Heidelberg, Germany

- Dirk Lebiedz
- Julia Kammerer

Interdisciplinary Center for Scientific Computing (IWR) University of Heidelberg Heidelberg, Germany

Financial support

– Klaus Tschira Foundation gGmbH

