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Scale-Free Behavior in Protein Domain Networks

Stefan Wuchty
European Media Laboratory, Heidelberg, Germany

Several technical, social, and biological networks were recently found to demonstrate scale-free and small-world
behavior instead of random graph characteristics. In this work, the topology of protein domain networks generated
with data from the ProDom, Pfam, and Prosite domain databases was studied. It was found that these networks
exhibited small-world and scale-free topologies with a high degree of local clustering accompanied by a few long-
distance connections. Moreover, these observations apply not only to the complete databases, but also to the domain
distributions in proteomes of different organisms. The extent of connectivity among domains reflects the evolution-
ary complexity of the organisms considered.

Introduction

Many diverse systems may best be described as
networks with complex topologies. Often, the connec-
tion topology is assumed to be either completely regular
or completely random (Erdös and Rényi 1960). Watts
and Strogatz (1998) revealed a new class of network
topologies that lies somewhere between these two ex-
tremes. Originally, these small-world networks were
generated by randomly rewiring nodes in a regular net-
work. Small-world networks combine the local cluster-
ing of connections characteristic of regular networks
with occasional long-range connections between clus-
ters, as can be expected to occur in random networks.
By defining measures that distinguish these three types
of networks, Watts and Strogatz (1998) showed that sev-
eral biological, technological, and social networks are of
the small-world type. A small-world graph is formally
defined as a sparse graph which is much more highly
clustered than an equally sparse random graph. Barthé-
lémy and Amaral (1999) provided evidence that the ap-
pearance of small-world behavior is not a phase transi-
tion, but a crossover phenomenon which depends on
both the network size and the degree of disorder. Small-
world graphs were first illustrated with friendship net-
works (Milgram 1967) in sociology, often referred to as
‘‘six degrees of separation’’ (Guare 1990). The architec-
ture of the power grid of the western United States, the
structures of some sociological networks dealing with
mathematical collaborations on publications, and the
casting of actors in movies were found to be small-world
graphs (Watts and Strogatz 1998).

Barabási and Albert (1999) introduced a theoretical
model that generates graphs demonstrating a connectiv-
ity distribution which decays as a power-law. This fea-
ture was found to be a direct consequence of the follow-
ing two generic mechanisms: (1) networks are allowed
to expand continuously by the addition of new vertices,
and (2) these newly added nodes attach preferentially to
sites that are already well connected (Barabási and Al-
bert 1999). Since this feature is independent of the ac-
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tual size of the network, this class of inhomogeneous
networks was called scale-free networks. The topology
of the World Wide Web was investigated by considering
HTML documents as vertices connected by links point-
ing from one page to another (Albert, Jeong, and Bar-
abási 1999; Barabási and Albert 1999; Barabási, Albert,
and Jeong 2000). The latter net, as well as the Internet
which emerges from connecting different servers, dem-
onstrates scale-free properties. Both nets display a high
degree of robustness against errors (Albert, Jeong, and
Barabási 2000). However, these networks are highly vul-
nerable to perturbations of the highly connected nodes.

Biological Networks

Recently, scale-free and small-world behaviors
have also been found in biological networks. Watts and
Strogatz (1998) reported the architecture of the Caenor-
habditis elegans nervous system to show significant
small-world behavior. Fell and Wagner (2000) assem-
bled a list of stoichiometric equations representing the
central routes of energy metabolism and small-molecule
building block synthesis in Escherichia coli. A substrate
graph, defined by a vertex set consisting of all metab-
olites that occur in the network, was constructed. Two
metabolites were considered to be linked if they oc-
curred in the same reaction. Fell and Wagner (2000)
found the substrate graph to be sparse, with glutamate,
coenzyme A, 2-oxoglutarate, pyruvate, and glutamine
having the highest degree of connectivity. This sample
of metabolites might be viewed as a core of E. coli
metabolism which was found without any subjective
criteria.

Most recently, Jeong et al. (2000) comparatively
analyzed metabolic networks of organisms representing
all three domains of life. The metabolic network is rep-
resented by nodes, the substrates, connected by directed
edges symbolizing the actual reaction. The topologies of
these networks are best described by a scale-free model.
Furthermore, the diameters of the nets remain the same
for all of these networks regardless of the number of
substrates found in the given species. Interestingly, the
ranking of the most connected substrates is largely iden-
tical for all organisms, thus indicating hubs which dom-
inate the topology of the nets. Like the technical net-
works, the E. coli network theoretically has high toler-
ance to random errors but severe sensitivity to the re-
moval of the highly connected nodes.
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Another biochemical network is formed by sets of
domains which are linearly arranged in protein sequenc-
es. This might generate graphs comprising interesting
features. Since the topology of graphs thus generated is
still unknown, it is worth considering this way of treat-
ing domain architectures.

Domain Organization

Protein crystallography reveals that the fundamen-
tal unit of protein structure is the domain. Independent
of neighboring sequences, this region of a polypeptide
chain folds into a distinct structure and mediates bio-
logical functionality (Janin and Chothia 1985). Most
proteins contain only one single domain (Doolittle
1995). Some sequences appear as multidomain proteins
adopting different linear arrangements of their domain
sets. On average, such domain architectures comprise
two to three domains; however, some human proteins
contain up to 130 domains (Li et al. 2001).

Similar to the discussion about the role of certain
metabolites in the emergence of metabolism, there has
been a debate about the actual number of existing do-
mains and their origin. One view treats all past and pre-
sent proteins as the result of shuffling of a large set of
primordial polypeptides (Dorit and Gilbert 1991). These
are assumed to result from splicing events involving ex-
ons separated by introns (Gilbert and Glynias 1993).
The other view deals with the existence of a few small
polypeptides in the early stages of life; these are the
predecessors of most contemporary proteins (Doolittle
1995). Gene duplication and subsequent modification
were employed to form the latter molecules from this
small set of polypeptides. Independent of the timing for
the introduction of introns, recombination in introns pro-
vides a mechanism for the exchange of exons between
genes. This mechanism for the acquisition of new func-
tions by eukaryotic genes is commonly known as ‘‘exon
shuffling.’’ It was assumed that primitive proteins were
encoded by exons that were spliced together (Seidel,
Pompliano, and Knowles 1992). However, such shuf-
fling events take on biological significance only if the
exons involved carry a functional or structural domain.
Although many examples of exon shuffling have been
found, no significant correspondence between exons and
units of protein structure has been detected (Stoltzfus et
al. 1994).

It is common to find that newly sequenced proteins
are homologous to some other known proteins over parts
of their lengths. Thus, most proteins may have descend-
ed from relatively few ancestral types. The sequences of
large proteins often show signs of having evolved by
the joining of preexisting domains in new combinations.
Such a mechanism is commonly known as ‘‘domain
shuffling’’ and appears as two types: domain duplication
and domain insertion (Doolittle 1995). Domain dupli-
cation refers to the internal duplication of at least one
domain in a gene. Domain insertion denotes the process
by which structural or functional domains are exchanged
between proteins or inserted into a protein. Shuffling of
domains has more biological significance than exon

shuffling because domains are real structural and func-
tional units in proteins, while exons often are not.

Functional links between proteins have also been
detected by analyzing the fusion patterns of protein do-
mains. Two separate proteins A and B in one organism
may be expressed as a fusion protein in other species.
A protein sequence containing both A and B is termed
a Rosetta Stone sequence. However, this framework ap-
plies only in a minority of cases (Marcotte et al. 1999).

Protein Domain Databases

Currently, there are a large variety of databases,
each collecting protein domain information in complete-
ly different ways. The Prosite database (http://expasy.
proteome.org.au/prosite/) consists of biologically signif-
icant motifs and profiles determined and formulated
with appropriate computational tools. Uncharacterized
proteins are assigned to certain protein families with the
aid of weight matrices and profiles (Hofmann et al.
1999). The majority of Prosite documentation refers to
motifs thus providing combined motif and domain in-
formation. Release 16.0 of Prosite contains 1,374 dif-
ferent patterns, rules, and profiles.

Another database is Pfam (http://www.sanger.ac.uk/
Software/Pfam/index.shtml), which is a large collection
of multiple-sequence alignments of protein families and
profile hidden Markov models (Bateman et al. 2000).
Moreover, Pfam contains curated documentation for all
2,478 families in version 5.5, covering nearly 65% of
SwissProt release 38 and SP-TrEMBL release 11.

Many more protein families are found, however, in
ProDom (http://www.toulouse.inra.fr/prodom.html)
(Corpet et al. 2000), which contains all protein domain
families that can be generated automatically from the
SwissProt and TrEMBL sequence databases (Bairoch
and Apweiler 2000). Expert-validated families are ex-
tended by using Pfam seed alignments to build new
ProDom families with the Psi-Blast database searching
algorithm (Altschul et al. 1997). Other families are gen-
erated by recursive use of Psi-Blast. ProDom, version
99.2, has 157,648 domain families, covering almost
95% of SwissProt release 37 and TrEMBL release 10.
ProDom offers higher coverage than Pfam. However,
ProDom tends to overpredict the number of protein fam-
ilies which can be discovered as subsets of larger
families.

Finally, InterPro (http://www.ebi.ac.uk/interpro)
(Apweiler et al. 2001a) is an integrated documentation
resource of protein families, domains, and functional
sites rationalizing the complementary efforts of the
Prosite, Pfam, ProDom, and Prints (Attwood et al. 2000)
database projects. InterPro contains manually curated
documentation and diagnostic signatures from these da-
tabases and uses these to create a unique, nonredundant
characterization of protein families, domains, and func-
tional sites.

Proteome Databases

The advent of fully sequenced genomes of various
organisms has facilitated the investigation of proteomes.
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Table 1
Some Basic Data for the ProDom, Prosite, and Pfam
Graph

ProDom Pfam Prosite

nv . . . . . . . . . . .
^kv& . . . . . . . . . .
nconn.comp.

a. . . . .
nunconn.dom.

a . . . .

5,995
2.33

1,394
975

2,478
1.12

1,396
1,316

1,360
0.77

809
577

a nconn.comp. denotes the number of connected components of the underlying
graph. nunconn.dom. denotes the number of domains which appear unlinked in the
respective graph.

The Proteome Analysis database (http://www.ebi.ac.uk/
proteome) (Apweiler et al. 2001b) has been set up to
provide comprehensive statistical and comparative anal-
yses of the predicted proteomes of fully sequenced or-
ganisms. The analysis is compiled using mainly InterPro
and CluSTr (Kriventseva et al. 2001) and is performed
on the nonredundant complete proteome sets of
SwissProt and TrEMBL entries. The latest release pro-
vides 41 nonredundant proteomes of genomes of ar-
chaea, bacteria, and eukaryotes.

Most recently, SwissProt and Ensembl have pre-
pared a complete nonredundant human proteome set
consisting of 30,585 sequences. The set consists of the
combination of the SwissProt/TrEMBL nonredundant
human proteome set (15,691 sequences) and additional
nonredundant peptides predicted by Ensembl (14,894
sequences). Ensembl (http://www.ensembl.org) provides
complete and consistent annotation across the human
genome.

In this paper, domain networks generated with data
from ProDom, Pfam, and Prosite domain databases will
be presented. Furthermore, InterPro domain networks of
different species that are generated with complete pro-
teome sets provided by the Proteome Analysis database
will be considered. Subsequently, the topology of these
networks will be investigated, and biological and evo-
lutionary consequences will be discussed.

Materials and Methods

A domain graph GD 5 (VD, ED) is formally defined
by a vertex set VD consisting of all domains found with-
in proteins. Two domains are regarded as being adjacent
if they occur together in one protein at least once. An
undirected edge connecting these two vertices indicates
this relationship. Such connections define the edges set
ED. In this graph, the degree k of a vertex is the number
of other vertices to which it is linked. The mean path
length L from a vertex to any other vertex of the graph
is defined as the average of the path lengths to all other
vertices. Another important quantity is the clustering co-
efficient C(y) of a vertex y. It measures the fraction of
the vertices connected to y which are also connected to
each other. In extension, the clustering coefficient C of
the graph is defined as the average of C(y) over all y.

Growing amounts of empirical and theoretical data
about the topologies of large complex networks indicate
the emergence of several network types. Basically, these
types are classified by the connectivity distribution P(k)
of nodes. Exponential networks are characterized by
P(k), which peaks at an average ^k& and decays expo-
nentially. Prominent protagonists of this type are the
random graph model (Erdös and Rényi 1960) and the
small-world model (Watts and Strogatz 1998). Both lead
to fairly homogenous networks with nodes comprising
approximately the same number of links k ; ^k& (Bar-
abási, Albert, and Jeong 1999). Furthermore, a small-
world graph adopts a sparse topology, L $ Lrandom, but
remains more highly clustered than an equally sparse
random graph, C k Crandom (Watts and Strogatz 1998).
By contrast, in the class of inhomogeneous networks

called scale-free networks, the connectivity distribution
decays as a power-law P(k) ; k2g. The latter result in-
dicates a network free of a characteristic scale. Com-
pared with exponential networks, the probability that a
node is highly connected (k k ^k&) is statistically sig-
nificant in scale-free networks (Barabási and Albert
1999).

In this study, protein domain information was re-
trieved from the ProDom, Prosite, and Pfam databases.
Sixty-five percent of all ProDom sequences correspond
to families containing 10 or more members. In order to
restrict the size of the network, the sample of ProDom
domains focuses on these families. Thus, 5,995 ProDom
domains were obtained. The Prosite database declares
false-negative entries which were filtered out of the sam-
ple used for the network construction. Sequence entries
of each database provide SwissProt annotation. Thus,
every protein sequence was itemized with each domain
that it contained. This was done for each database sep-
arately. Domains which were listed due to their occur-
rence in one protein sequence represent vertices which
are connected to each other in the domain graphs.

Complete proteome data sets of different species
were retrieved from the Proteome Analysis database,
which uses InterPro annotation of protein domains. Such
proteome data sets adopt SwissProt, TrEMBL, Tr-
EMBLnew, and Ensembl annotation of proteins. Anal-
ogously, InterPro domains which appear along with oth-
er domains in a protein sequence represent vertices
which are connected to each other in the domain graphs.
The numbers of links to other domains in such graphs
were logarithmically binned, and frequencies were thus
obtained. Such pairs of values were subjected to a linear
regression procedure.

PAJEK (the Slovene word for spider), a program
for large-network analysis and visualization, was used
for the calculation of the latter values (Batagelj and
Mrvar 1998). This program is available at http://vlado.
fmf.uni-lj.si/pub/networks/pajek/.

Results

The domain graphs are sparse, with small average
degrees (table 1) compared with the maximal possible
degree k 5 n 2 1, where n is the number of vertices.
In this respect, the results of figure 1 are interesting. The
vertices which denote Prosite domains were ranked by
the frequency of their connectivity. The curve is similar
to a generalized Zipf’s law curve, in which it is ob-
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FIG. 1.—The frequency distribution of Prosite domain connectiv-
ity. The number of links to other domains are ranked by their fre-
quencies, which follow a generalized Zipf’s law: f(x) 5 a(b 1 x)2c,
with x being the rank and f(x) being its frequency. Parameter values
of the best fit (dot-dashed curve) are a 5 0.21; b 5 7.93; and c 5
0.89.

FIG. 2.—The frequency distribution of domain connections within
protein sequences. Domain data were obtained from the ProDom,
Pfam, and Prosite protein databases.

Table 2
Characteristic Path Length L and Clustering Coefficient
C of ProDom, Pfam, and Prosite Domain Nets

Lactual Lrandom Cactual Crandom

ProDom. . . . .
Pfam . . . . . . .
Prosite . . . . . .

4.96
4.54
5.44

5.81
9.05
6.46

0.51
0.15
0.33

0.0008
0.0003
0.0044

served that the frequency of occurrence of some event
f(x) as a function of the rank x is a power-law function
f(x) 5 a(b 1 x)2c, with the exponent c close to unity.
The plot of Prosite domains in figure 1 satisfies the latter
condition, with c 5 0.89. We are thus dealing with rel-
atively few highly connected domains and many rarely
connected ones. Essentially, the frequency distributions
of ProDom and Pfam domains are similar. However,
they fit the generalized Zipf’s law less well. Distribu-
tions following Zipf’s law have also been observed in
the context of literary vocabulary (Miller and Newman
1958), frequency of secondary structures of RNA
(Schuster et al. 1994), lattice proteins (Bornberg-Bauer
1997), and hits per web page on the World Wide Web
(Huberman et al. 1998). This observation is in accor-
dance with the picture of scale-free networks which are
topologically dominated by a few highly connected
hubs.

As illustrated in figure 2, frequency distributions of
vertices with degree k follow a distribution comparable
to a power-law distribution. Although the shapes of the
distribution curves are different, they share an area of
linearity. Regarding these latter areas, the frequency dis-
tribution of links from ProDom domains follows P(k) ø
k2g with g 5 2.5. By contrast, the distributions of de-
grees of Pfam and Prosite domains follow the same law
with g 5 1.7. Although the curves do not follow exactly
the proposed curvature of the frequency of degrees in
the original scale-free model, one can observe a type of
scale-free dependence even if the scale-free model is a
raw approximation of the real situation. Obviously, the
topology of such domain graphs is better described by
a highly heterogenous scale-free or small-world model
than by an exponential model.

In table 2 it can be observed that the domain graphs
partially satisfy the structural properties of small-world
graphs. While clustering coefficients Cy of the domain

graphs by far exceed the respective coefficients of cor-
responding random graphs, the characteristic path
lengths Ly do not accomplish the demanded qualifica-
tions of a small-world graph. Emphasizing the obser-
vation that the vast majority of proteins contains only
one domain (Marcotte et al. 1999), the domain networks
contain a huge amount of unconnected vertices (see ta-
ble 1). This feature of domain distribution among pro-
tein sequences illustrates in particular the large number
of connected components in domain graphs. Although
domain graphs are thus highly scattered, every graph
contains a major subnet among its connected compo-
nents which gathers the majority of domains. These ma-
jor components feature Ly and Cy values that satisfy the
demands of small-world graphs by exceeding the re-
spective values of random graphs of equal size. Thus,
this study focuses on the analysis of the major compo-
nents exhibiting small-world and scale-free behavior. In
order to clarify the graph topology, figure 3 displays the
major component of the network which was generated
by proteome data of Saccharomyces cerevisiae.

The investigations carried out so far consider all
domains without taking into account their origin. Pre-
sumably, the degree of connectivity is different if one
focuses on different species. All domain connections of
six species which developed differently in the course of
evolution were extracted from the complete proteome
sets provided by the Proteome Analysis database. As
illustrated in figures 4 and 5, the frequency distributions
of links regarding humans, C. elegans, Drosophila,
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FIG. 3.—Major component of the domain network of Saccharomyces cerevisiae, comprising 204 vertices and 347 edges.

FIG. 4.—The frequency distribution of domain connections within
protein sequences of Caenorhabditis elegans, Drosophila, and humans.
The domain data were obtained from the Proteome Analysis database.
The numbers of links to other domains were logarithmically binned,
and frequencies were thus obtained. These pairs of values were subject
to a linear regression procedure. Regression lines of Drosophila and
human coincide.

FIG. 5.—The frequency distribution of domain connections within
protein sequences of Methanococcus, Escherichia coli, yeast, and hu-
mans. The domain data were obtained from the Proteome Analysis
database. The numbers of links to other domains were logarithmically
binned, and frequencies were thus obtained. These pairs of values were
subject to a linear regression procedure.
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89 79 72 64 61 58yeast, E. coli, and Methanococcus still follow the ex-
pected power-law. However, the slopes of the lines are
slightly different. Interestingly, the slopes of humans
and Drosophila nearly coincide in figure 4. Moreover,
the regression lines show almost the same interception
in comparison with C. elegans. In figure 5, the situation
changes slightly. While the slopes in comparison with
humans are significantly steeper, the regression lines of
yeast, E. coli, and Methanococcus run nearly parallel.
Thus, it is tempting to assume a trend which guides
multicellular organisms to higher domain connectivity.

Interestingly, the majority of highly connected
InterPro domains appear in signaling pathways, as the
list of the 10 best linked domains of different species in
table 3 reveals. Obviously, the evolutionary trend to-
ward compartmentalization of the cell and multicellu-
larity demands a higher degree of organization. There-
fore, more emphasis is put on the maintenance of inter-
and intracellular signaling channels, cell-cell contacts,
and integrity. Hence, proteomes have to provide protein
sets which cover such cellular demands. The growing
number of highly linked domains of signaling and ex-
tracellular proteins seen in comparisons of archaea, pro-
karyotes, and eukaryotes confirms this assumption.

Discussion

What might be the functional, phylogenetic, or
bioinformatic implications of the power-law distribution
of the connectivity of domains and the small-world be-
havior of the domain networks studied?

Completeness and Quality of Data

Regardless of whether Pfam, Prosite, or ProDom
domain information is used, the qualitative topology of
domain networks remains unchanged. Since these da-
tabases differ significantly in size and methodology, the
argument is tempting that even though the current do-
main data are far from complete, the topology of domain
networks will not change significantly with the growing
amount of domain data. This assumption is supported
by the characteristics of scale-free networks leading to
domain graphs which are independent of the actual size
of the underlying networks. Hence, the major observa-
tion that the topology of domain graphs is mainly dom-
inated by few highly linked domains will not be changed
entirely with the incorporation of new protein domain
data. InterPro gathers and streamlines mostly distinct
domain information from the above-mentioned domain
databases, providing a centralized annotation resource to
reduce the amount of duplication between the database
resources. Hence, scale-free characteristics of InterPro
domain networks which were generated with the aid of
complete proteomes of different species do not change
significantly in comparison to networks generated with
domain information from a single database. However, it
should be noted that the acquisition of protein domain
information is biased to a certain extent, since eukary-
otic and mammalian proteins are far better studied and
documented in databases on average than archeae or
prokaryotic proteins.
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Another important consideration regards aspects of
acquisition of proteome information. Proteome data
which were entirely extracted by genome translation
might not sufficiently explain the setup of all cellular
processes. Domain networks were generated with the aid
of translated genome databases which did not cover ef-
fects that include alternative splicing and domain usage.
Alternative pre-mRNA splicing is an important mecha-
nism for regulating gene expression in higher eukaryotes
(Smith, Patton, and Nadal-Ginard 1989). By recent es-
timates, the primary transcripts of ;30% of human
genes are subject to alternative splicing. Thus, the con-
nectivity of domains found in higher eukaryotes might
be significantly higher than it is ‘‘in silico.’’

In addition, the differences in frequency distribu-
tions between higher eukaryotes, bacteria, and archaea
in figures 4 and 5 might also be related to the numbers
of domain architectures that were found in the different
organisms. Since eukaryotes and mammals developed
much more distinct domain architectures (International
Human Genome Sequencing Consortium 2001), the re-
spective distributions of domain connections are statis-
tically more reliable than those of prokaryotes and ar-
chaea. Therefore, future studies should clarify whether
the small number of domain architectures leads to slight
artifacts in the slope of prokaryotic and archeal
organisms.

Evolutionary Aspects

Are the observed topologies a direct consequence
of domain evolution? The model of Barabási and Albert
(1999) generates scale-free networks by preferential at-
tachment of newly added vertices to already well con-
nected ones. Consequently, Fell and Wagner (2000) ar-
gued that vertices with many connections in a metabolic
network were metabolites originating very early in the
course of evolution and shaping a core metabolism.
Analogously, highly connected domains could also have
originated very early. If one compares the lists of the
most highly linked domains in table 3, this assumption
does not hold. The majority of more highly linked do-
mains in Methanococcus and E. coli are mainly con-
cerned with the maintenance of metabolism. Given that
in Methanococcus and E. coli nearly none of the highly
linked domains in the higher organisms can be found,
and vice versa, the focus of domain connection shifts to
domain hubs involved in signal transduction, transcrip-
tion, and cell-cell interactions. In addition, helicase C
has roughly similar degrees of connection in all organ-
isms. However, the ankyrin repeat motif (ank) is one of
the few domains which can be found to be unlinked in
E. coli, whereas it possesses a growing degree of con-
nectivity in higher eukaryotes.

Apparently, the majority of highly connected do-
mains seem to have arisen late in eukaryotes of larger
proteome size. The evolutionary trend toward multicel-
lularity requires proteomes which feature new and ad-
ditional complex cellular processes like signal transduc-
tion or cell-cell contacts. One way of accomplishing
growing demands is the expansion of already-existing

protein sets. Indeed, many protein families are expanded
in humans relative to Drosophila and C. elegans. These
are mainly involved in inter- and intracellular signaling
pathways, apoptosis (Aravind, Dixit, and Koonin 2001),
development, and immune and neural functions (Inter-
national Human Genome Sequencing Consortium 2001;
Venter et al. 2001). Although many protein families of
these organisms exhibit great disparities in abundance,
C2H2-type zinc finger motifs and eukaryotic protein ki-
nase (pkinase) are among the top 10 most frequent do-
main families (Rubin et al. 2000; Tupler, Perini, and
Green 2001) and the best-connected domains in table 3.
At least in higher eukaryotes, both domains tend to in-
crease their connections to other domains in a way sim-
ilar to that of the already-mentioned ankyrin repeat mo-
tif (ank).

Although the human phenotypic complexity ex-
ceeds the respective ones of Drosophila and C. elegans
by far, proteome dimensions remain considerably low.
Thus, combinatorial aspects of domain arrangements
might have a major impact on the preservation of cel-
lular processes. Among chromatin-associated proteins,
transcription factors, and especially apoptosis proteins,
a significant portion of protein architecture is shared be-
tween humans and Drosophila. However, substantial in-
novation in the creation of new protein architectures was
significantly detectable (International Human Genome
Sequencing Consortium 2001). Apparently, expansion
of particular domain families and accompanying evo-
lution of complex domain architectures from presum-
ably preexisting domains coincides with the increase of
the organism’s complexity. In this regard, the different
slopes in figures 4 and 5 indicate this evolutionary trend
to higher connectivity of domains (e.g., pkinase, SH3,
and EGF in table 3), as well as a growing complexity
in the arrangement of domains within proteins. In com-
parison to noneukaryotes, Drosophila developed more
complex domain architectures. Thus, the frequency dis-
tributions of the latter organisms can be clearly sepa-
rated in figure 5, where lower complexity in domain
architecture is indicated by steeper slopes. The first point
is well reflected by the slightly different slopes of hu-
mans, Drosophila, and C. elegans in figure 4.

In conclusion, a variety of arguments point to an
increase in the complexity of the proteome from the sin-
gle-celled yeast to multicellular vertebrates such as hu-
mans. Essentially, the expansion of protein families co-
incides with the increase of connectivity of the respec-
tive domains. Extensive shuffling of domains to increase
combinatorial diversity might provide protein sets which
are sufficient to preserve cellular procedures without
dramatically expanding the absolute size of the protein
complement. Hence, the relatively greater proteome
complexity of higher eukaryotes, and especially hu-
mans, cannot be simply a consequence of genome size
but, to a certain extent, must also be a consequence of
innovations in domain arrangements. Thus, highly
linked domains represent functional centers in various
different cellular aspects. They could be treated as evo-
lutionary hubs which help to organize the domain space
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by occasionally linking them to numerous other func-
tionally related domains.

Quality of the Basic Models

The view that new protein architectures can be cre-
ated by shuffling, adding, and deleting domains, result-
ing in new proteins from old parts, is well reflected by
the emergence of such domain hubs. However, there ex-
ist a variety of domain arrangements which contradict
the ideal image of continuous addition of new domain
links to already-existing hubs in the sense of scale-free
networks. The S1 RNA-binding domain is linked to he-
licase C in E. coli, while it is found to be connected to
RNB, KH domain, and RNAse PH in humans. Neither
the procedure of generating a small-world graph in the
original sense nor the scale-free model provides the de-
letion of vertices. However, the assumption that domains
emerge and disappear occasionally is a basic demand of
protein evolution. Thus, scale-free and small-world
models can obviously only be a rough approximation to
the real situation.
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BARABÁSI, A., R. ALBERT, and H. JEONG. 1999. Mean-field
theory for scale-free random networks. Physica A 272:173–
187.

———. 2000. Scale-free characteristics of random networks:
the topology of the World-Wide Web. Physica A 281:69–
77.
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